29 research outputs found
Do calcineurin inhibitors influence the serum concentrations of mizoribine?
Background: Mizoribine (MZR) is an antimetabolite that inhibits inosine-monophosphate dehydrogenase and has been used for preventing rejection in renal transplantation. However, the effect of calcineurin inhibitors (CNIs) on the pharmacokinetics of MZR has not been shown. This study was performed to show the influence of CNIs (tacrolimus [Tac] or cyclosporine [CyA]) on the serum concentration of MZR.Methods: Thirty-four living-donor renal transplant recipients administered a four-drug immunosuppressive therapy regimen (steroid, CNIs, basiliximab and MZR 6 mg/kg/day) were investigated. 20 recipients were treated with Tac and 14 were with CyA. Serum concentrations of MZR were obtained retrospectively at 464 points and at 243 points for each. Population pharmacokinetic (PPK) analysis was used to make pharmacokinetic models of serum MZR. After statistically evaluating the correlation of the pharmacokinetic models with the actual data, areas under the curves (AUCs) of each CNI were also estimated in these models and statistically evaluated.Results: The mean values of the PPK parameters (absorption lag time, absorption rate constant [Ka], apparent volume of distribution [V/F] and oral clearance of MZR [CLMZR/F]) were 0.600 hr and 0.643 hr, 1.14/hr and 0.911/hr, 0.732×body weight (WT) (L) and 0.784×WT (L), and 1.64×creatinine clearance (CLcr) (L/hr) and 1.81×CLcr (L/hr), respectively. Moreover, the serum concentrations of MZR at all-time points were estimated with these parameters. The correlation coefficients between the individual actual and estimated serum concentrations of MZR in the Tac group and the CyA group were 0.988 and 0.992, respectively. The average value of the AUCs of MZR corrected by the CLcr in the Tac group, and the CyA group were 0.61±0.21 and 0.55±0.19 (average value±standard deviation) for each (p=0.19).Conclusion: These findings suggest the pharmacokinetics of MZR were well-described by 1-compartment model with first-order absorption. Moreover, concomitant use of CNIs, e.g., Tac and CyA, may have no significant influence on the pharmacokinetics of MZR
Cholecalciferol Supplementation Attenuates Bone Loss in Incident Kidney Transplant Recipients: A Prespecified Secondary Endpoint Analysis of a Randomized Controlled Trial
Vitamin D deficiency, persistent hyperparathyroidism, and bone loss are common after kidney transplantation (KTx). However, limited evidence exists regarding the effects of cholecalciferol supplementation on parathyroid hormone (PTH) and bone loss after KTx. In this prespecified secondary endpoint analysis of a randomized controlled trial, we evaluated changes in PTH, bone metabolic markers, and bone mineral density (BMD). At 1 month post-transplant, we randomized 193 patients to an 11-month intervention with cholecalciferol (4000 IU/d) or placebo. The median baseline 25-hydroxyvitamin D (25[OH]D) level was 10 ng/mL and 44% of participants had osteopenia or osteoporosis. At the end of the study, the median 25(OH)D level was increased to 40 ng/mL in the cholecalciferol group and substantially unchanged in the placebo group. Compared with placebo, cholecalciferol significantly reduced whole PTH concentrations (between-group difference of −15%; 95% confidence interval [CI] −25 to −3), with greater treatment effects in subgroups with lower 25(OH)D, lower serum calcium, or higher estimated glomerular filtration rate (pint < 0.05). The percent change in lumbar spine (LS) BMD from before KTx to 12 months post-transplant was −0.2% (95% CI −1.4 to 0.9) in the cholecalciferol group and −1.9% (95% CI −3.0 to −0.8) in the placebo group, with a significant between-group difference (1.7%; 95% CI 0.1 to 3.3). The beneficial effect of cholecalciferol on LS BMD was prominent in patients with low bone mass pint < 0.05). Changes in serum calcium, phosphate, bone metabolic markers, and BMD at the distal radius were not different between groups. In mediation analyses, change in whole PTH levels explained 39% of treatment effects on BMD change. In conclusion, 4000 IU/d cholecalciferol significantly reduced PTH levels and attenuated LS BMD loss after KTx. This regimen has the potential to eliminate vitamin D deficiency and provides beneficial effects on bone health even under glucocorticoid treatment. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).Tsujita M., Doi Y., Obi Y., et al. Cholecalciferol Supplementation Attenuates Bone Loss in Incident Kidney Transplant Recipients: A Prespecified Secondary Endpoint Analysis of a Randomized Controlled Trial. Journal of Bone and Mineral Research 37, 303 (2022); https://doi.org/10.1002/jbmr.4469
Treatment for secondary hyperparathyroidism focusing on parathyroidectomy
Secondary hyperparathyroidism (SHPT) is a major problem for patients with chronic kidney disease and can cause many complications, including osteodystrophy, fractures, and cardiovascular diseases. Treatment for SHPT has changed radically with the advent of calcimimetics; however, parathyroidectomy (PTx) remains one of the most important treatments. For successful PTx, removing all parathyroid glands (PTGs) without complications is essential to prevent persistent or recurrent SHPT. Preoperative imaging studies for the localization of PTGs, such as ultrasonography, computed tomography, and 99mTc-Sestamibi scintigraphy, and intraoperative evaluation methods to confirm the removal of all PTGs, including, intraoperative intact parathyroid hormone monitoring and frozen section diagnosis, are useful. Functional and anatomical preservation of the recurrent laryngeal nerves can be confirmed via intraoperative nerve monitoring. Total or subtotal PTx with or without transcervical thymectomy and autotransplantation can also be performed. Appropriate operative methods for PTx should be selected according to the patients’ need for kidney transplantation. In the case of persistent or recurrent SHPT after the initial PTx, localization of the causative PTGs with autotransplantation is challenging as causative PTGs can exist in the neck, mediastinum, or autotransplanted areas. Additionally, the efficacy and cost-effectiveness of calcimimetics and PTx are increasingly being discussed. In this review, medical and surgical treatments for SHPT are described
Pre-Transplant Calcimimetic Use and Dose Information Improves the Accuracy of Prediction of Tertiary Hyperparathyroidism after Kidney Transplantation: A Retrospective Cohort Study
Tertiary hyperparathyroidism (THPT) is characterized by elevated parathyroid hormone and serum calcium levels after kidney transplantation (KTx). To ascertain whether pre-transplant calcimimetic use and dose information would improve THPT prediction accuracy, this retrospective cohort study evaluated patients who underwent KTx between 2010 and 2022. The primary outcome was the development of clinically relevant THPT. Logistic regression analysis was used to evaluate pre-transplant calcimimetic use as a determinant of THPT development. Participants were categorized into four groups according to calcimimetic dose, developing two THPT prediction models (with or without calcimimetic information). Continuous net reclassification improvement (CNRI) and integrated discrimination improvement (IDI) were calculated to assess ability to reclassify the degree of THPT risk by adding pre-transplant calcimimetic information. Of the 554 patients, 87 (15.7%) developed THPT, whereas 139 (25.1%) received pre-transplant calcimimetic treatment. Multivariate logistic regression analysis revealed that pre-transplant calcimimetic use was significantly associated with THPT development. Pre-transplant calcimimetic information significantly improved the predicted probability accuracy of THPT (CNRI and IDI were 0.91 [p < 0.001], and 0.09 [p < 0.001], respectively). The THPT prediction model including pre-transplant calcimimetic information as a predictive factor can contribute to the prevention and early treatment of THPT in the era of calcimimetics
The effect of cholecalciferol supplementation on allograft function in incident kidney transplant recipients: A randomized controlled study
It is unknown whether cholecalciferol supplementation improves allograft outcomes in kidney transplant recipients (KTRs). We conducted a single-center randomized, double-blind, placebo-controlled trial of daily 4000 IU cholecalciferol supplementation in KTRs at 1-month posttransplant. The primary endpoint was the change in eGFR from baseline to 12-month posttransplant. Secondary endpoints included severity of interstitial fibrosis and tubular atrophy (IFTA) at 12-month posttransplant and changes in urinary biomarkers. Of 193 randomized patients, 180 participants completed the study. Changes in eGFR were 1.2 mL/min/1.73 m2 (95% CI; −0.7 to 3.1) in the cholecalciferol group and 1.8 mL/min/1.73 m2 (95% CI, −0.02 to 3.7) in the placebo group, with no significant between-group difference (−0.7 mL/min/1.73 m2 [95% CI; −3.3 to 2.0], p = 0.63). Subgroup analyses showed detrimental effects of cholecalciferol in patients with eGFR <45 mL/min/1.73 m2 (Pinteraction <0.05, between-group difference; −4.3 mL/min/1.73 m2 [95% CI; −7.3 to −1.3]). The degree of IFTA, changes in urine albumin-to-creatinine ratio, or adverse events including hypercalcemia and infections requiring hospitalization did not differ between groups. In conclusion, cholecalciferol supplementation did not affect eGFR change compared to placebo among incident KTRs. These findings do not support cholecalciferol supplementation for improving allograft function in incident KTRs. Clinical trial registry: This study was registered in the University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR) as UMIN000020597 (please refer to the links below). UMIN-CTR: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000023776.Doi Y., Tsujita M., Hamano T., et al. The effect of cholecalciferol supplementation on allograft function in incident kidney transplant recipients: A randomized controlled study. American Journal of Transplantation 21, 3043 (2021); https://doi.org/10.1111/ajt.16530
Analysis of T and B Cell Epitopes to Predict the Risk of de novo Donor-Specific Antibody (DSA) Production After Kidney Transplantation: A Two-Center Retrospective Cohort Study
Risk prediction of de novo donor specific antibody (DSA) would be very important for long term graft outcome after organ transplantation. The purpose of this study was to elucidate the association of eplet mismatches and predicted indirectly recognizable HLA epitopes (PIRCHE) scores with de novo DSA production. Our retrospective cohort study enrolled 691 living donor kidney transplantations. HLA-A, B, DRB and DQB eplet mismatches and PIRCHE scores (4 digit of HLA-A, B, DR, and DQ) were determined by HLA matchmaker (ver 2.1) and PIRCHE-II Matching Service, respectively. Weak correlation between eplet mismatches and PIRCHE scores was identified, although both measurements were associated with classical HLA mismatches. Class II (DRB+DQB) eplet mismatches were significantly correlated with the incidence of de novo class II (DR/DQ) DSA production [8/235 (3.4%) in eplet mismatch ≤ 13 vs. 92/456 (20.2%) in eplet mismatch ≥ 14, p < 0.001]. PIRCHE scores were also significantly correlated with de novo class II DSA production [26/318 (8.2%) in PIRCHE ≤ 175 vs. 74/373 (19.8%) in PIRCHE ≥ 176, p < 0.001]. Patients with low levels of both class II eplet mismatches and PIRCHE scores developed de novo class II DSA only in 4/179 (2.2%). Analysis of T cell and B cell epitopes can provide a beneficial information on the design of individualized immunosuppression regimens for prevention of de novo DSA production after kidney transplantation
Clinical Significance of Shared T Cell Epitope Analysis in Early De Novo Donor-Specific Anti-HLA Antibody Production After Kidney Transplantation and Comparison With Shared B cell Epitope Analysis
In pre-sensitizing events, immunological memory is mainly created via indirect allorecognition where CD4+ T cells recognize foreign peptides in the context of self-HLA class II (pHLA) presented on antigen-presenting cells. This recognition makes it possible for naive CD4+ T-helper cells to differentiate into memory cells, resulting in the creation of further antibody memory. These responses contribute to effective secretion of donor-specific anti-HLA antibodies (DSA) after second encounters with the same peptide. Preformed donor-reactive CD4+ memory T cells may induce early immune responses after transplantation; however, the tools to evaluate them are limited. This study evaluated shared T cell epitopes (TEs) between the pre-sensitizing and donor HLA using an in silico assay, an alternative to estimate donor-reactive CD4+ memory T cells before transplantation. In 578 living donor kidney transplants without preformed DSA, 69 patients had anti-HLA antibodies before transplantation. Of them, 40 had shared TEs and were estimated to have donor-reactive CD4+ memory T cells. De novo DSA formation in the early phase was significantly higher in the shared TE-positive group than in the anti-HLA antibody- and shared TE-negative groups (p=0.001 and p=0.02, respectively). In conclusion, evaluation of shared TEs for estimating preformed donor-reactive CD4+ memory T cells may help predict the risk of early de novo DSA formation after kidney transplantation
Two-year outcomes in de novo renal transplant recipients receiving everolimus-facilitated calcineurin inhibitor reduction regimen from TRANSFORM study
TRANSFORM was a 24-month, prospective, open-label trial in 2037 de novo renal transplant recipients (RTxRs) randomized (1:1) within 24 hours of transplantation to receive everolimus (EVR) with reduced-exposure calcineurin inhibitor (EVR+rCNI) or mycophenolate with standard-exposure CNI (MPA+sCNI). Consistent with previously reported 12-month findings, noninferiority of the EVR+rCNI regimen for the primary endpoint of treated biopsy-proven acute rejection (tBPAR) or estimated glomerular filtration rate (eGFR) <50 mL/min/1.73 m2 was achieved at Month 24 (47.9% vs 43.7%; difference = 4.2%; 95% confidence interval [CI] = -0.3, 8.7; P = 0.006). Mean eGFR was stable up to Month 24 (52.6 vs 54.9 mL/min/1.73m2 ) in both arms. The incidence of de novo donor-specific antibodies (dnDSA) was lower in the EVR+rCNI arm (12.3% vs 17.6%) among on-treatment patients. Although discontinuation rates due to adverse events were higher with EVR+rCNI (27.2% vs 15.0%), rates of cytomegalovirus (2.8% vs 13.5%) and BK virus (5.8% vs 10.3%) infections were lower. Cytomegalovirus infection rates were significantly lower with EVR+rCNI even in the D+/R- high-risk group (P<0.0001). In conclusion, the EVR+rCNI regimen offers comparable efficacy and graft function with low tBPAR and dnDSA rates and significantly lower incidence of viral infections relative to standard-of-care up to 24 months. This article is protected by copyright. All rights reserved
Renal failure due to tubulointerstitial nephropathy in an infant with cranioectodermal dysplasia
Cranioectodermal dysplasia (CED) is a rare autosomal recessive disease with characteristic craniofacial, skeletal, and ectodermal-derived tissue abnormalities. In this disease, tubulointerstitial nephropathy (TIN) has been reported as one of the life-threatening combinations. Here we report a sporadic case of CED showing signs of renal failure during the perinatal period. Renal biopsy at the age of 6 months revealed TIN consisting of marked interstitial fibrosis with inflammatory cell infiltration accompanied by scattered tubular atrophy. Glomeruli were often sclerosed and others showed prominent immaturity; the findings are supportive of progressive deterioration of renal function in this infant. This case suggests that TIN in CED can occur during the fetal period and progress rapidly, leading to end-stage renal failure in infancy