417 research outputs found

    Peripheral blood stem cell transplantation ; an update

    Get PDF
    Patients with a number of different malignancies have been treated with high-dose chemotherapy and peripheral blood stem cell transplantation (PBSCT). PBSC already replaced bone marrow as the source of autologous hematopoietic progenitor support. This is due to ease of collection, rapid engraftment and less possibility of tumor cell contamination in the graft. Furthermore, allogeneic transplantation of granulocyte colony-stimulating factor (G-CSF) mobilized PBSC is now being increasingly performed. Recent advance of clinical PBSCT and new strategies are stressed in this review. New strategies include CD 34+cell purification, ex vivo expansion of PBSC and PBSC as a target cell for gene therapy. Major future advance may occur better understanding of the mechanism of mobilization and the biology of PBSC

    Ground-state properties of neutron-rich Mg isotopes

    Get PDF
    We analyze recently-measured total reaction cross sections for 24-38Mg isotopes incident on 12C targets at 240 MeV/nucleon by using the folding model and antisymmetrized molecular dynamics(AMD). The folding model well reproduces the measured reaction cross sections, when the projectile densities are evaluated by the deformed Woods-Saxon (def-WS) model with AMD deformation. Matter radii of 24-38Mg are then deduced from the measured reaction cross sections by fine-tuning the parameters of the def-WS model. The deduced matter radii are largely enhanced by nuclear deformation. Fully-microscopic AMD calculations with no free parameter well reproduce the deduced matter radii for 24-36Mg, but still considerably underestimate them for 37,38Mg. The large matter radii suggest that 37,38Mg are candidates for deformed halo nucleus. AMD also reproduces other existing measured ground-state properties (spin-parity, total binding energy, and one-neutron separation energy) of Mg isotopes. Neutron-number (N) dependence of deformation parameter is predicted by AMD. Large deformation is seen from 31Mg with N = 19 to a drip-line nucleus 40Mg with N = 28, indicating that both the N = 20 and 28 magicities disappear. N dependence of neutron skin thickness is also predicted by AMD.Comment: 15 pages, 13 figures, to be published in Phys. Rev.

    A calmodulin inhibitor, W-7 influences the effect of cyclic adenosine 3', 5'-monophosphate signaling on ligninolytic enzyme gene expression in Phanerochaete chrysosporium

    Get PDF
    The capacity of white-rot fungi to degrade wood lignin may be highly applicable to the development of novel bioreactor systems, but the mechanisms underlying this function are not yet fully understood. Lignin peroxidase (LiP) and manganese peroxidase (MnP), which are thought to be very important for the ligninolytic property, demonstrated increased activity in Phanerochaete chrysosporium RP-78 (FGSC #9002, ATCC MYA-4764™) cultures following exposure to 5 mM cyclic adenosine 3', 5'-monophosphate (cAMP) and 500 μM 3'-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. Real-time reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that transcription of most LiP and MnP isozyme genes was statistically significantly upregulated in the presence of the cAMP and IBMX compared to the untreated condition. However, 100 μM calmodulin (CaM) inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), which had insignificant effects on fungal growth and intracellular cAMP concentration, not only offset the increased activity and transcription induced by the drugs, but also decreased them to below basal levels. Like the isozyme genes, transcription of the CaM gene (cam) was also upregulated by cAMP and IBMX. These results suggest that cAMP signaling functions to increase the transcription of LiP and MnP through the induction of cam transcription

    LINE-1 hypomethylation in gastric cancer, detected by bisulfite pyrosequencing, is associated with poor prognosis

    Get PDF
    BACKGROUND: Genome-wide DNA hypomethylation plays an important role in genomic instability and carcinogenesis. DNA methylation in the long interspersed nucleotide element-1, L1 (LINE-1) repetitive element is a good indicator of the global DNA methylation level. In some types of human neoplasms, LINE-1 methylation level is attracting interest as a predictive marker for patient prognosis. However, the prognostic significance of LINE-1 hypomethylation in gastric cancer remains unclear. METHODS: Using 203 resected gastric cancer specimens, we quantified LINE-1 methylation using bisulfite-pyrosequencing technology. A Cox proportional hazards model was used to calculate the hazard ratio (HR), adjusted for the clinical and pathological variables. RESULTS: Gastric cancers showed significantly lower LINE-1 methylation levels compared to matched normal gastric mucosa (p < 0.0001; n = 74). Tumoral LINE-1 methylation range was 11.6–97.5 on a 0–100 scale (n = 203; mean 71.4, median 74.4, standard deviation 12.9). LINE-1 hypomethylation was significantly associated with shorter overall survival [log-rank p = 0.029; univariate HR 2.01, 95 % confidence interval (CI) 1.09–3.99, p = 0.023; stage-matched HR 1.88, 95 % CI 1.02–3.74, p = 0.041; multivariate HR 1.98, 95 % CI 1.04–4.04, p = 0.036]. No significant effect modification was observed by any of the covariates in survival analysis (all p interaction >0.25). CONCLUSIONS: LINE-1 hypomethylation in gastric cancer is associated with shorter survival, suggesting that it has potential for use as a prognostic biomarker

    Medaka: a promising model animal for comparative population genomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Within-species genome diversity has been best studied in humans. The international HapMap project has revealed a tremendous amount of single-nucleotide polymorphisms (SNPs) among humans, many of which show signals of positive selection during human evolution. In most of the cases, however, functional differences between the alleles remain experimentally unverified due to the inherent difficulty of human genetic studies. It would therefore be highly useful to have a vertebrate model with the following characteristics: (1) high within-species genetic diversity, (2) a variety of gene-manipulation protocols already developed, and (3) a completely sequenced genome. Medaka (<it>Oryzias latipes</it>) and its congeneric species, tiny fresh-water teleosts distributed broadly in East and Southeast Asia, meet these criteria.</p> <p>Findings</p> <p>Using <it>Oryzias </it>species from 27 local populations, we conducted a simple screening of nonsynonymous SNPs for 11 genes with apparent orthology between medaka and humans. We found medaka SNPs for which the same sites in human orthologs are known to be highly differentiated among the HapMap populations. Importantly, some of these SNPs show signals of positive selection.</p> <p>Conclusion</p> <p>These results indicate that medaka is a promising model system for comparative population genomics exploring the functional and adaptive significance of allelic differentiations.</p

    Malignant Peritoneal Mesothelioma Mimicking Ischemic Colitis

    Get PDF
    The prognosis of malignant peritoneal mesothelioma is extremely poor with a mean survival time of 12 months. The initial symptoms are poor and atypical. Because of its rare entity and little knowledge of its treatments, there are few reports of long-term survival. We encountered a very unique case with strong impression on radiological findings of malignant peritoneal methothelioma. We had misdiagnosed it because of the findings and because the time course was similar to that of ischemic colitis. The radiological findings on CT and enema disappeared within one week after antibiotic therapy
    corecore