We analyze recently-measured total reaction cross sections for 24-38Mg
isotopes incident on 12C targets at 240 MeV/nucleon by using the folding model
and antisymmetrized molecular dynamics(AMD). The folding model well reproduces
the measured reaction cross sections, when the projectile densities are
evaluated by the deformed Woods-Saxon (def-WS) model with AMD deformation.
Matter radii of 24-38Mg are then deduced from the measured reaction cross
sections by fine-tuning the parameters of the def-WS model. The deduced matter
radii are largely enhanced by nuclear deformation. Fully-microscopic AMD
calculations with no free parameter well reproduce the deduced matter radii for
24-36Mg, but still considerably underestimate them for 37,38Mg. The large
matter radii suggest that 37,38Mg are candidates for deformed halo nucleus. AMD
also reproduces other existing measured ground-state properties (spin-parity,
total binding energy, and one-neutron separation energy) of Mg isotopes.
Neutron-number (N) dependence of deformation parameter is predicted by AMD.
Large deformation is seen from 31Mg with N = 19 to a drip-line nucleus 40Mg
with N = 28, indicating that both the N = 20 and 28 magicities disappear. N
dependence of neutron skin thickness is also predicted by AMD.Comment: 15 pages, 13 figures, to be published in Phys. Rev.