198 research outputs found

    Self-Organized Formation of Polarized Cortical Tissues from ESCs and Its Active Manipulation by Extrinsic Signals

    Get PDF
    SummaryHere, we demonstrate self-organized formation of apico-basally polarized cortical tissues from ESCs using an efficient three-dimensional aggregation culture (SFEBq culture). The generated cortical neurons are functional, transplantable, and capable of forming proper long-range connections in vivo and in vitro. The regional identity of the generated pallial tissues can be selectively controlled (into olfactory bulb, rostral and caudal cortices, hem, and choroid plexus) by secreted patterning factors such as Fgf, Wnt, and BMP. In addition, the in vivo-mimicking birth order of distinct cortical neurons permits the selective generation of particular layer-specific neurons by timed induction of cell-cycle exit. Importantly, cortical tissues generated from mouse and human ESCs form a self-organized structure that includes four distinct zones (ventricular, early and late cortical-plate, and Cajal-Retzius cell zones) along the apico-basal direction. Thus, spatial and temporal aspects of early corticogenesis are recapitulated and can be manipulated in this ESC culture

    Long interspersed nuclear element-1 hypomethylation is a potential biomarker for the prediction of response to oral fluoropyrimidines in microsatellite stable and CpG island methylator phenotype-negative colorectal cancer

    Get PDF
    金沢大学がん研究所We investigated the clinical value of methylation of long interspersed nuclear element-1 (LINE-1) for the prognosis of colorectal cancer (CRC) and for the survival benefit from adjuvant chemotherapy with oral fluoropyrimidines. LINE-1 methylation in tumor DNA was measured by quantitative methylation-specific PCR in 155 samples of stage II and stage III CRC. The presence of microsatellite instability and CpG island methylator phenotype (CIMP) were assessed and 131 microsatellite stable/CIMP- cases were selected for survival analysis, of which 77 patients had received postoperative adjuvant chemotherapy with oral fluoropyrimidines. The CRC cell lines were used to investigate possible mechanistic links between LINE-1 methylation and effects of 5-fluorouracil (5-FU). High LINE-1 methylation was a marker for better prognosis in patients treated by surgery alone. Patients with low LINE-1 methylation who were treated with adjuvant chemotherapy survived longer than those treated by surgery alone, suggestive of a survival benefit from the use of oral fluoropyrimidines. In contrast, a survival benefit from chemotherapy was not observed for patients with high LINE-1 methylation. The CRC cell lines treated with 5-FU showed increased expression of LINE-1 mRNA. This was associated with upregulation of the phospho-histone H2A.X in cells with low LINE-1 methylation, but not in cells with high LINE-1 methylation. The 5-FU-mediated induction of phospho-histone H2A.X, a marker of DNA damage, was inhibited by knockdown of LINE-1. These results suggest that LINE-1 methylation is a novel predictive marker for survival benefit from adjuvant chemotherapy with oral fluoropyrimidines in CRC patients. This finding could be important for achieving personalized chemotherapy. © 2010 Japanese Cancer Association

    Disconnectivity between Dorsal Raphe Nucleus and Posterior Cingulate Cortex in Later Life Depression

    Get PDF
    The dorsal raphe nucleus (DRN) has been repeatedly implicated as having a significant relationship with depression, along with its serotoninergic innervation. However, functional connectivity of the DRN in depression is not well understood. The current study aimed to isolate functional connectivity of the DRN distinct in later life depression (LLD) compared to a healthy age-matched population. Resting state functional magnetic resonance imaging (rsfMRI) data from 95 participants (33 LLD and 62 healthy) were collected to examine functional connectivity from the DRN to the whole brain in voxel-wise fashion. The posterior cingulate cortex (PCC) bilaterally showed significantly smaller connectivity in the LLD group than the control group. The DRN to PCC connectivity did not show any association with the depressive status. The findings implicate that the LLD involves disruption of serotoninergic input to the PCC, which has been suggested to be a part of the reduced default mode network in depression

    Effect of herbal medicine daikenchuto on gastrointestinal symptoms following laparoscopic colectomy in patients with colon cancer: A prospective randomized study

    Get PDF
    We conducted a prospective randomized study to investigate the effect of daikenchuto (DKT) on abdominal symptoms following laparoscopic colectomy in patients with left-sided colon cancer. Patients who suffered from abdominal pain or distention on postoperative day 1 were randomized to either the DKT group or non-DKT group. The primary endpoints were the evaluation of abdominal pain, abdominal distention, and quality of life. The metabolome and gut microbiome analyses were conducted as secondary endpoints. A total of 17 patients were enrolled: 8 patients in the DKT group and 9 patients in the non-DKT group. There were no significant differences in the primary endpoints and postoperative adverse events between the two groups. The metabolome and gut microbiome analyses showed that the levels of plasma lipid mediators associated with the arachidonic acid cascade were lower in the DKT group than in the non-DKT group, and that the relative abundance of genera Serratia and Bilophila were lower in the DKT group than in the non-DKT group. DKT administration did not improve the abdominal symptoms following laparoscopic colectomy. The effects of DKT on metabolites and gut microbiome have to be further investigated

    Enhancing the Therapeutic Efficacy of Bone Marrow-Derived Mononuclear Cells with Growth Factor-Expressing Mesenchymal Stem Cells for ALS in Mice.

    Get PDF
    Several treatments have been attempted in amyotrophic lateral sclerosis (ALS) animal models and patients. Recently, transplantation of bone marrow-derived mononuclear cells (MNCs) was investigated as a regenerative therapy for ALS, but satisfactory treatments remain to be established. To develop an effective treatment, we focused on mesenchymal stem cells (MSCs) expressing hepatocyte growth factor, glial cell line-derived neurotrophic factor, and insulin-like growth factor using human artificial chromosome vector (HAC-MSCs). Here, we demonstrated the transplantation of MNCs with HAC-MSCs in ALS mice. As per our results, the progression of motor dysfunction was significantly delayed, and their survival was prolonged dramatically. Additional analysis revealed preservation of motor neurons, suppression of gliosis, engraftment of numerous MNCs, and elevated chemotaxis-related cytokines in the spinal cord of treated mice. Therefore, growth factor-expressing MSCs enhance the therapeutic effects of bone marrow-derived MNCs for ALS and have a high potential as a novel cell therapy for patients with ALS
    corecore