38 research outputs found

    HMGA2, the architectural transcription factor high mobility group, is expressed in the developing and mature mouse cochlea.

    Get PDF
    Hmga2 protein belongs to the non-histone chromosomal high-mobility group (HMG) protein family. HMG proteins have been shown to function as architectural transcription regulators, facilitating enhanceosome formation on a variety of mammalian promoters. Hmga2 are expressed at high levels in embryonic and transformed cells. Terminally differentiated cells, however, have been reported to express only minimal, if any, Hmga2. Our previous affymetrix array data showed that Hmga2 is expressed in the developing and adult mammalian cochleas. However, the spatio-temporal expression pattern of Hmga2 in the murine cochlea remained unknown. In this study, we report the expression of Hmga2 in developing and adult cochleas using immunohistochemistry and quantitative real time PCR analysis. Immunolabeling of Hmga2 in the embryonic, postnatal, and mature cochleas showed broad Hmga2 expression in embryonic cochlea (E14.5) at the level of the developing organ of Corti in differentiating hair cells, supporting cells, in addition to immature cells in the GER and LER areas. By postnatal stage (P0-P3), Hmga2 is predominantly expressed in the hair and supporting cells, in addition to cells in the LER area. By P12, Hmga2 immunolabeling is confined to the hair cells and supporting cells. In the adult ear, Hmga2 expression is maintained in the hair and supporting cell subtypes (i.e. Deiters' cells, Hensen cells, pillar cells, inner phalangeal and border cells) in the cochlear epithelium. Using quantitative real time PCR, we found a decrease in transcript level for Hmga2 comparable to other known inner ear developmental genes (Sox2, Atoh1, Jagged1 and Hes5) in the cochlear epithelium of the adult relative to postnatal ears. These data provide for the first time the tissue-specific expression and transcription level of Hmga2 during inner ear development and suggest its potential dual role in early differentiation and maintenance of both hair and supporting cell phenotypes

    Correction: HMGA2, the architectural transcription factor high mobility group, is expressed in the developing and mature mouse cochlea.

    No full text
    [This corrects the article DOI: 10.1371/journal.pone.0088757.]

    GABAA Receptor Agonist and Antagonist Alter Vestibular Compensation and Different Steps of Reactive Neurogenesis in Deafferented Vestibular Nuclei of Adult Cats

    No full text
    International audienceStrong reactive cell proliferation occurs in the vestibular nuclei after unilateral vestibular neurectomy (UVN). Most of the newborn cells survive, differentiate into glial cells and neurons with GABAergic phenotype, and have been reported to contribute to recovery of the posturo-locomotor functions in adult cats. Because the GABAergic system modulates vestibular function recovery and the different steps of neurogenesis in mammals, we aimed to examine in our UVN animal model the effect of chronic infusion of GABA(A) receptor (R) agonist and antagonist in the vestibular nuclei. After UVN and one-month intracerebroventricular infusions of saline, GABA(A)R agonist (muscimol) or antagonist (gabazine), cell proliferation and differentiation into astrocytes, microglial cells, and neurons were revealed using immunohistochemical methods. We also determined the effects of these drug infusions on the recovery of posturo-locomotor and oculomotor functions through behavioral tests. Our results showed that surprisingly, one month after UVN, newborn cells did not survive in the UVN-muscimol group whereas the number of GABAergic pre-existent neurons increased, and the long-term behavioral recovery of the animals was drastically impaired. Conversely, a significant number of newborn cells survived up to 1 month in the UVN-gabazine group whereas the astroglial population increased, and these animals showed the fastest recovery in behavioral functions. This study reports for the first time that GABA plays multiple roles, ranging from beneficial to detrimental on the different steps of a functional postlesion neurogenesis and further, strongly influences the time course of vestibular function recovery

    Striatal cholinergic interneurons regulate cognitive and affective dysfunction in partially dopamine-depleted mice

    No full text
    International audienceEarly non-motor symptoms such as mood disorders and cognitive deficits are increasingly recognised in Parkinson's disease (PD). They may precede the characteristic motor symptomatology caused by dopamine (DA) neuronal loss in the substantia nigra pars compacta (SNc). It is well known that striatal cholinergic interneurons (ChIs) are emerging as key regulators of PD motor symptom, however, their involvement in the cognitive and affective alterations occurring in the premotor phase of PD is poorly understood. We used optogenetic photoinhibition of striatal ChIs in mice with mild nigrostriatal 6-hydroxydopamine (6-OHDA) lesions and assessed their role in anxiety-like behaviour in the elevated plus maze, social memory recognition of a congener and visuospatial object recognition. In transgenic mice specifically expressing halorhodopsin (eNpHR) in cholinergic neurons, striatal ChIs photoinhibi-tion reduced the anxiety-like behaviour and reversed social and spatial short-term memory impairment induced by moderate DA depletion (e.g., 50% loss of tyrosine hydroxylase TH-positive neurons in the SNc). Systemic injection of telenzepine (0.3 mg/kg), a preferential M1 muscarinic cholinergic receptors antagonist, improved anxiety-like behaviour, social memory recognition but not spatial memory deficits. Our results suggest that dysfunction of the striatal cholinergic system may play a role in the short-term cognitive and emotional deficits of partially DA-depleted mice. Blocking cholinergic activity with M1 muscarinic receptor antagonists may represent a possible therapeutic target, although not exclusive, to modulate these early non-motor deficits

    Noise-Induced Hearing Loss Alters Potassium-Chloride CoTransporter KCC2 and GABA Inhibition in the auditory centers

    No full text
    Abstract Homeostatic plasticity, the ability of neurons to maintain their averaged activity constant around a set point value, is thought to account for the central hyperactivity after hearing loss. Here, we investigated the putative role of GABAergic neurotransmission in this mechanism after a noise-induced hearing loss larger than 50 dB in high frequencies in guinea pigs. The effect of GABAergic inhibition is linked to the normal functioning of K+‒Cl- co-transporter isoform 2 (KCC2) which maintains a low intracellular concentration of chloride. The expression of membrane KCC2 were investigated before after noise trauma in the ventral and dorsal cochlear nucleus (VCN and DCN, respectively) and in the inferior colliculus (IC). Moreover, the effect of gabazine (GBZ), a GABA antagonist, was also studied on the neural activity in IC. We show that KCC2 is downregulated in VCN, DCN and IC 3 days after noise trauma, and in DCN and IC 30 days after the trauma. As expected, GBZ application in the IC of control animals resulted in an increase of spontaneous and stimulus-evoked activity. In the noise exposed animals, on the other hand, GBZ application decreased the stimulus-evoked activity in IC neurons. The functional implications of these central changes are discussed

    Vestibular Nuclei: A New Neural Stem Cell Niche?

    No full text
    We previously reported adult reactive neurogliogenesis in the deafferented vestibular nuclei following unilateral vestibular neurectomy (UVN) in the feline and the rodent model. Recently, we demonstrated that UVN induced a significant increase in a population of cells colocalizing the transcription factor sex determining region Y-box 2 (SOX2) and the glial fibrillary acidic protein (GFAP) three days after the lesion in the deafferented medial vestibular nucleus. These two markers expressed on the same cell population could indicate the presence of lesion-reactive multipotent neural stem cells in the vestibular nuclei. The aim of our study was to provide insight into the potential neurogenic niche status of the vestibular nuclei in physiological conditions by using specific markers of stem cells (Nestin, SOX2, GFAP), cell proliferation (BrdU) and neuronal differentiation (NeuN). The present study confirmed the presence of quiescent and activated adult neural stem cells generating some new neurons in the vestibular nuclei of control rats. These unique features provide evidence that the vestibular nuclei represent a novel NSC site for the generation of neurons and/or glia in the adult rodent under physiological conditions

    Betahistine Treatment in a Cat Model of Vestibular Pathology: Pharmacokinetic and Pharmacodynamic Approaches

    No full text
    This study is a pharmacokinetic (PK) and pharmacodynamics (PD) approach using betahistine doses levels in unilateral vestibular neurectomized cats (UVN) comparable to those used in humans for treating patients with Menière's disease. The aim is to investigate for the first time oral betahistine administration (0.2 and 2 mg/kg/day) with plasma concentrations of betahistine and its major metabolite 2-pyridylacetic acid (2-PAA) (N = 9 cats), the time course of posture recovery (N = 13 cats), and the regulation of the enzyme synthesizing histamine (histidine decarboxylase: HDC) in the tuberomammillary nuclei (TMN) of UVN treated animals (N = the same 13 cats plus 4 negative control cats). In addition the effect of co-administration of the lower betahistine dose (0.2 mg/kg/day) and selegiline (1 mg/kg/day), an inhibitor of the monamine oxidase B (MAOBi) implicated in betahistine catabolism was investigated. The PK parameters were the peak concentration (Cmax), the time when the maximum concentration is reached (Tmax) for both betahistine and 2-PAA and the area under the curve (AUC). The PD approach consisted at quantifying the surface support area, which is a good estimation of posture recovery. The plasma concentration-time-profiles of betahistine and 2-PAA in cats were characterized by early Cmax-values followed by a phase of rapid decrease of plasma concentrations and a final long lasting low level of plasma concentrations. Co administration of selegiline and betahistine increased values of Cmax and AUC up to 146- and 180-fold, respectively. The lowest dose of betahistine (0.2 mg/kg) has no effects on postural function recovery but induced an acute symptomatic effect characterized by a fast balance improvement (4–6 days). The higher dose (2 mg/kg) and the co-administration treatment induced both this acute effect plus a significant acceleration of the recovery process. The histaminergic activity of the neurons in the TMN was significantly increased under treatment with the 2 mg/kg betahistine daily dose, but not with the lower dose alone or in combination with selegiline. The results show for the first time that faster balance recovery in UVN treated cats is accompanied with high plasma concentrations of betahistine and 2-PAA, and upregulation of HDC immunopositive neurons in the TMN. The higher betahistine dose gives results similar to those obtained with the lower dose when co-administrated with an inhibitor of betahistine metabolism, selegiline. From a clinical point of view, the study provides new perspectives for Menière's disease treatment, regarding the daily betahistine dose that should be necessary for fast and slow metabolizers

    Interactions entre contrôle inhibiteur et flexibilité comportementale: impact de la dénervation dopaminergique au niveau du striatum dorsomédian chez la souris

    No full text
    International audienceIn Parkinson's disease, nigrostriatal dopamine (DA) degeneration is commonly associated with motor symptomatology. However, non-motor symptoms affecting cognitive function, such as behavioural flexibility and inhibitory control may also appear early in the disease. Here we addressed the role of DA innervation of the dorsomedial striatum (DMS) in mediating these functions in 6-hydroxydopamine (6-OHDA)-lesioned mice using instrumental conditioning in various tasks. Behavioural flexibility was studied in a simple reversal task (nosepoke discrimination) or in reversal of a two-step sequence of actions (central followed by lateral nose-poke). Our results show that mild DA lesions of the DMS induces behavioural flexibility deficits in the sequential reversal learning only. In the first sessions following reversal of contingency, lesioned mice enhanced perseverative sequence of actions to the initial rewarded side then produced premature responses directly to the correct side omitting the central response, thus disrupting the two-step sequence of actions. These deficits may be linked to increased impulsivity as 6-OHDA-lesioned mice were unable to inhibit a previously learned motor response in a cued response inhibition task assessing proactive inhibitory control. Our findings show that partial DA denervation restricted to DMS impairs behavioural flexibility and proactive response inhibition in mice. Such striatal DA lesion may thus represent a valuable animal model for exploring deficits in executive control documented in early stage of Parkinson's disease

    Culture conditions have an impact on the maturation of traceable, transplantable mouse embryonic stem cell-derived otic progenitor cells.

    No full text
    International audienceThe generation of replacement inner ear hair cells (HCs) remains a challenge and stem cell therapy holds the potential for developing therapeutic solutions to hearing and balance disorders. Recent developments have made significant strides in producing mouse otic progenitors using cell culture techniques to initiate HC differentiation. However, no consensus has been reached as to efficiency and therefore current methods remain unsatisfactory. In order to address these issues, we compare the generation of otic and HC progenitors from embryonic stem (ES) cells in two cell culture systems: suspension vs. adherent conditions. In the present study, an ES cell line derived from an Atoh1-green fluorescent protein (GFP) transgenic mouse was used to track the generation of otic progenitors, initial HCs and to compare these two differentiation systems. We used a two-step short-term differentiation method involving an induction period of 5 days during which ES cells were cultured in the presence of Wnt/transforming growth factor TGF-β inhibitors and insulin-like growth factor IGF-1 to suppress mesoderm and reinforce presumptive ectoderm and otic lineages. The generated embryoid bodies were then differentiated in medium containing basic fibroblast growth factor (bFGF) for an additional 5 days using either suspension or adherent culture methods. Upon completion of differentiation, quantitative polymerase chain reaction analysis and immunostaining monitored the expression of otic/HC progenitor lineage markers. The results indicate that cells differentiated in suspension cultures produced cells expressing otic progenitor/HC markers at a higher efficiency compared with the production of these cell types within adherent cultures. Furthermore, we demonstrated that a fraction of these cells can incorporate into ototoxin-injured mouse postnatal cochlea explants and express MYO7A after transplantation

    Schematic of the postnatal day-3 (P3) and adult organs of Corti (A). inner hair cells (IHC) and outer hair cells (OHCs), as well as the non-sensory supporting cell types are indicated.

    No full text
    <p>Deiters’ cells (DCs) surround each OHC separating them from each other and their nuclei are located underneath the nuclei of the OHCs. The pillar cells (PCs) separate the IHCs from the OHCs. Hensen’s cells (HeCs) are external to the OHCs as indicated. Inner phalengeal (IPC) and border cells (BC) surround each IHC. The IHC and OHC derived from the greater epithelial ridge (GER) and the lesser epithelial ridge (LER), respectively, during embryogenesis. The cytologic changes that occur during the postnatal development within the GER area contribute to the formation of the inner sulcus (IS). The interdental cells (IDCs) are located in the limbus (LM) area of the adult organ of Corti. BM: basilar membrane. Image adapted from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0088757#pone.0088757-Smeti2" target="_blank">[47]</a>. Undifferentiated CGR8 mouse embryonic stem (ES) cells growing in feeder-free (LIF containing medium) cell culture medium used as positive control for Hmga2 expression (B). All the nuclei of the ES cells are uniformly immunolabeled with Hmga2 antiserum (shown in red). The nuclei are counterstained with DAPI (shown in blue). Scale bar: 20 µm in all panels.</p
    corecore