471 research outputs found

    Sequence Spaces Generated by Moduli of Smoothness

    Get PDF
    Sin resume

    Temporal expectancies driven by self- and externally generated rhythms

    Get PDF
    The dynamic attending theory proposes that rhythms entrain periodic fluctuations of attention which modulate the gain of sensory input. However, temporal expectancies can also be driven by the mere passage of time (foreperiod effect). It is currently unknown how these two types of temporal expectancy relate to each other, i.e. whether they work in parallel and have distinguishable neural signatures. The current research addresses this issue. Participants either tapped a 1Hz rhythm (active task) or were passively presented with the same rhythm using tactile stimulators (passive task). Based on this rhythm an auditory target was then presented early, in synchrony, or late. Behavioural results were in line with the dynamic attending theory as RTs were faster for in- compared to out-of-synchrony targets. Electrophysiological results suggested self-generated and externally induced rhythms to entrain neural oscillations in the delta frequency band. Auditory ERPs showed evidence of two distinct temporal expectancy processes. Both tasks demonstrated a pattern which followed a linear foreperiod effect. In the active task, however, we also observed an ERP effect consistent with the dynamic attending theory. This study shows that temporal expectancies generated by a rhythm and expectancy generated by the mere passage of time can work in parallel and sheds light on how these mechanisms are implemented in the brain

    How action structures time: About the perceived temporal order of action and predicted outcomes

    Get PDF
    Few ideas are as inexorable as the arrow of causation: causes must precede their effects. Explicit or implicit knowledge about this causal order permits humans and other animals to predict and control events in order to produce desired outcomes. The sense of agency is deeply linked with representation of causation, since it involves the experience of a self-capable of acting on the world. Since causes must precede effects, the perceived temporal order of our actions and subsequent events should be relevant to the sense of agency. The present study investigated whether the ability to predict the outcome of an action would impose the classical cause-precedes-outcome pattern on temporal order judgements. Participants indicated whether a visual stimulus (dots moving upward or downward) was presented either before or after voluntary actions of the left or right hand. Crucially, the dot motion could be either congruent or incongruent with an operant association between hand and motion direction learned in a previous learning phase. When the visual outcome of voluntary action was congruent with previous learning, the motion onset was more often perceived as occurring after the action, compared to when the outcome was incongruent. This suggests that the prediction of specific sensory outcomes restructures our perception of timing of action and sensory events, inducing the experience that congruent effects occur after participants' actions. Interestingly, this bias to perceive events according to the temporal order of cause and outcome disappeared when participants knew that motion directions were automatically generated by the computer. This suggests that the reorganisation of time perception imposed by associative learning depends on participants' causal beliefs

    Quantification of white matter fibre pathways disruption in frontal transcortical approach to the lateral ventricle or the interventricular foramen in diffusion tensor tractography

    Get PDF
    Pathologies occupying the interventricular foramen (foramen of Monro — FM) or the anterior part of lateral ventricle (LV) are accessed by the transcortical or transcallosal route. As severing of rostral corpus callosum has been deemed inferior to cortical incision, the approaches through various points of frontal lobe have been developed. Superior (F1), middle (F2) frontal gyrus or occasionally superior frontal sulcus are used as an entry of neurosurgical corridor. In spite of the fact that every approach to LV or FM causes its characteristic irreversible damage to white matter, to date all of transcortical routes are regarded as equivalent. The current study compared the damage of main neural bundles between virtualtrans-F1 and trans-F2 corridors by means of diffusion tensor tractography method (DTT) in 11 magnetic resonance imaging (MRI) exams from clinical series (22 hemispheres, regardless of dominance). Corpus callosum, cingulum, subdivisions I and II of superior longitudinal fasciculus (SLF I and SLF II), corticoreticular as well as pyramidal tracts crossing both approaches were subjected to surgical violation. Both approaches served a similar total number of fibres (0.94 to 1.78 [× 103]).Trans-F1 route caused significantly greater damage of total white matter volume(F1: 8.26 vs. F2: 7.16 mL), percentage of SLF I fibres (F1: 78.6% vs. F2: 28.6%)and cingulum (F1: 49.4% vs. F2: 10.6%), whereas trans-F2 route interrupted morecorticoreticular fibres (F1: 4.5% vs. F2: 30.7%). Pyramidal tract (F1: 0.6% vs. F2:1.3%) and SLF II (F1: 15.9% vs. F2: 26.2%) were marginally more vulnerable incase of the access via middle frontal gyrus. Both approaches destroyed 7% of callosal fibres. Summarising the above DTT findings, trans-F2 route disrupted a greater number of fibres from eloquent neural bundles (SLF II, pyramidal and corticoreticular tracts), therefore is regarded as inferior to trans-F1 one. Due to lack of up-to-date guidelines with recommendations of the approaches to LV or FM, an individual preoperative planning based on DTT should precede a surgery

    Prior Precision Modulates the Minimization of Auditory Prediction Error

    Get PDF
    The predictive coding model of perception proposes that successful representation of the perceptual world depends upon canceling out the discrepancy between prediction and sensory input (i.e., prediction error). Recent studies further suggest a distinction to be made between prediction error triggered by non-predicted stimuli of different prior precision (i.e., inverse variance). However, it is not fully understood how prediction error with different precision levels is minimized in the predictive process. Here, we conducted a magnetoencephalography (MEG) experiment which orthogonally manipulated prime-probe relation (for contextual precision) and stimulus repetition (for perceptual learning which decreases prediction error). We presented participants with cycles of tone quartets which consisted of three prime tones and one probe tone of randomly selected frequencies. Within each cycle, the three prime tones remained identical while the probe tones changed once at some point (e.g., from repetition of 123X to repetition of 123Y). Therefore, the repetition of probe tones can reveal the development of perceptual inferences in low and high precision contexts depending on their position within the cycle. We found that the two conditions resemble each other in terms of N1m modulation (as both were associated with N1m suppression) but differ in terms of N2m modulation. While repeated probe tones in low precision context did not exhibit any modulatory effect, repeated probe tones in high precision context elicited a suppression and rebound of the N2m source power. The differentiation suggested that the minimization of prediction error in low and high precision contexts likely involves distinct mechanisms

    Nonlinear Folding Wing-Tips for Gust Loads Alleviation

    Get PDF

    Adaptive behaviour and feedback processing integrate experience and instruction in reinforcement learning

    Get PDF
    In any non-deterministic environment, unexpected events can indicate true changes in the world (and require behavioural adaptation) or reflect chance occurrence (and must be discounted). Adaptive behaviour requires distinguishing these possibilities. We investigated how humans achieve this by integrating high-level information from instruction and experience. In a series of EEG experiments, instructions modulated the perceived informativeness of feedback: Participants performed a novel probabilistic reinforcement learning task, receiving instructions about reliability of feedback or volatility of the environment. Importantly, our designs de-confound informativeness from surprise, which typically co-vary. Behavioural results indicate that participants used instructions to adapt their behaviour faster to changes in the environment when instructions indicated that negative feedback was more informative, even if it was simultaneously less surprising. This study is the first to show that neural markers of feedback anticipation (stimulus-preceding negativity) and of feedback processing (feedback-related negativity; FRN) reflect informativeness of unexpected feedback. Meanwhile, changes in P3 amplitude indicated imminent adjustments in behaviour. Collectively, our findings provide new evidence that high-level information interacts with experience-driven learning in a flexible manner, enabling human learners to make informed decisions about whether to persevere or explore new options, a pivotal ability in our complex environment

    Confidence Predictions Affect Performance Confidence and Neural Preparation in Perceptual Decision Making

    Get PDF
    Decisions are usually accompanied by a feeling of being wrong or right – a subjective confidence estimate. But what information is this confidence estimate based on, and what is confidence used for? To answer these questions, research has largely focused on confidence regarding current or past decisions, for example identifying how characteristics of the stimulus affect confidence, how confidence can be used as an internally generated feedback signal, and how communicating confidence can affect group decisions. Here, we report two studies which implemented a novel metacognitive measure: predictions of confidence for future perceptual decisions. Using computational modeling of behaviour and EEG, we established that experience-based confidence predictions are one source of information that affects how confident we are in future decision-making, and that learned confidence-expectations affect neural preparation for future decisions. Results from both studies show that participants develop precise confidence predictions informed by past confidence experience. Notably, our results also show that confidence predictions affect performance confidence rated after a decision is made; this finding supports the proposal that confidence judgments are based on multiple sources of information, including expectations. We found strong support for this link in neural correlates of stimulus preparation and processing. EEG measures of preparatory neural activity (contingent negative variation; CNV) and evidence accumulation (centro-parietal positivity; CPP) show that predicted confidence affects neural preparation for stimulus processing, supporting the proposal that one purpose of confidence judgments may be to learn about performance for future encounters and prepare accordingly

    Reward activates stimulus-specific and task-dependent representations in visual association cortices

    Get PDF
    Humans reliably learn which actions lead to rewards. One prominent question is how credit is assigned to environmental stimuli that are acted upon. Recent functional magnetic resonance imaging (fMRI) studies have provided evidence that representations of rewarded stimuli are activated upon reward delivery, providing possible eligibility traces for credit assignment. Our study sought evidence of postreward activation in sensory cortices satisfying two conditions of instrumental learning: postreward activity should reflect the stimulus category that preceded reward (stimulus specificity), and should occur only if the stimulus was acted on to obtain reward (task dependency). Our experiment implemented two tasks in the fMRI scanner. The first was a perceptual decision-making task on degraded face and house stimuli. Stimulus specificity was evident as rewards activated the sensory cortices associated with face versus house perception more strongly after face versus house decisions, respectively, particularly in the fusiform face area. Stimulus specificity was further evident in a psychophysiological interaction analysis wherein face-sensitive areas correlated with nucleus accumbens activity after face-decision rewards, whereas house-sensitive areas correlated with nucleus accumbens activity after house-decision rewards. The second task required participants to make an instructed response. The criterion of task dependency was fulfilled as rewards after face versus house responses activated the respective association cortices to a larger degree when faces and houses were relevant to the performed task. Our study is the first to show that postreward sensory cortex activity meets these two key criteria of credit assignment, and does so independently from bottom-up perceptual processing

    Action selection and action awareness

    Get PDF
    Human actions are often classified as either internally generated, or externally specified in response to environmental cues. These two modes of action selection have distinct neural bases, but few studies investigated how the mode of action selection affects the subjective experience of action. We measured the experience of action using the subjective compression of the interval between actions and their effects, known as ‘temporal binding’. Participants performed either a left or a right key press, either in response to a specific cue, or as they freely chose. Moreover, the time of each keypress could either be explicitly cued to occur in one of two designated time intervals, or participants freely chose in which interval to act. Each action was followed by a specific tone. Participants judged the time of their actions or the time of the tone. Temporal binding was found for both internally generated and for stimulus-based actions. However, the amount of binding depended on whether or not both the choice and the timing of action were selected in the same way. Stronger binding was observed when both action choice and action timing were internally generated or externally specified, compared to conditions where the two parameters were selected by different routes. Our result suggests that temporal action–effect binding depends on how actions are selected. Binding is strongest when actions result from a single mode of selection
    • …
    corecore