10 research outputs found

    Calcineurin/NFAT Activation-Dependence of Leptin Synthesis and Vascular Growth in Response to Mechanical Stretch

    Get PDF
    Background and Aims- Hypertension and obesity are important risk factors of cardiovascular disease. They are both associated with high leptin levels and have been shown to promote vascular hypertrophy, through the RhoA/ROCK and ERK1/2 phosphorylation. Calcineurin/NFAT activation also induces vascular hypertrophy by upregulating various genes. This study aimed to decipher whether a crosstalk exists between the RhoA/ROCK pathway, Ca+2/calcineurin/NFAT pathway, and ERK1/2 phosphorylation in the process of mechanical stretch-induced vascular smooth muscle cell (VSMC) hypertrophy and leptin synthesis. Methods and Results- Rat portal vein (RPV) organ culture was used to investigate the effect of mechanical stretch and exogenous leptin (3.1 nM) on VSMC hypertrophy and leptin synthesis. Results showed that stretching the RPV significantly upregulated leptin secretion, mRNA and protein expression, which were inhibited by the calcium channel blocker nifedipine (10 μM), the selective calcineurin inhibitor FK506 (1 nM) and the ERK1/2 inhibitor PD98059 (1 μM). The transcription inhibitor actinomycin D (0.1M) and the translation inhibitor cycloheximide (1 mM) significantly decreased stretch-induced leptin protein expression. Mechanical stretch or leptin caused an increase in wet weight changes and protein synthesis, considered as hypertrophic markers, while they were inhibited by FK506 (0.1 nM; 1 nM). In addition, stretch or exogenous leptin significantly increased calcineurin activity and MCIP1 expression whereas leptin induced NFAT nuclear translocation in VSMCs. Moreover, in response to stretch or exogenous leptin, the Rho inhibitor C3 exoenzyme (30 ng/mL), the ROCK inhibitor Y-27632 (10 μM), and the actin depolymerization agents Latrunculin B (50 nM) and cytochalasin D (1 μM) reduced calcineurin activation and NFAT nuclear translocation. ERK1/2 phosphorylation was inhibited by FK506 and C3. Conclusions- Mechanical stretch-induced VSMC hypertrophy and leptin synthesis and secretion is mediated by Ca2+/calcineurin/NFAT activation. RhoA/ROCK and ERK1/2 activation are critical for mechanical stretch-induced calcineurin activation

    Wild carrot pentane-based fractions suppress proliferation of human HaCaT keratinocytes and protect against chemically-induced skin cancer

    Get PDF
    Abstract Background Previous studies in our laboratory showed that the Lebanese Daucus carota ssp. carota (wild carrot) oil extract possesses in vitro and in vivo anticancer activities. The present study aims to examine the cytotoxic effect of Daucus carota oil fractions on human epidermal keratinocytes and evaluate the chemopreventive activity of the pentane diethyl ether fraction on DMBA/TPA induced skin carcinogenesis in mice. Methods Wild carrot oil extract was chromatographed to yield four fractions (F1, 100% pentane; F2, 50:50 pentane:diethyl ether; F3, 100% diethyl ether; F4 93:7 chloroform:methanol). The cytotoxic effect of fractions (10, 25, 50 and 100\ua0\u3bcg/mL) was tested on human epidermal keratinocytes (non-tumorigenic HaCaT cells and tumorigenic HaCaT-ras variants) using WST a ssay. Cell cycle phase distribution of tumorigenic HaCaT-ras variants was determined by flow cytometry post-treatment with F2 fraction. Apoptosis related proteins were also assessed using western blot. The antitumor activity of F2 fraction was also evaluated using a DMBA/TPA induced skin carcinoma in Balb/c mice. Results All fractions exhibited significant cytotoxicity, with HaCaT cells being 2.4\u20133 times less sensitive than HaCaT-ras A5 (benign tumorigenic), and HaCaT-ras II4 (malignant) cells. GC-MS analysis revealed the presence of a major compound (around 60%) in the pentane/diethylether fraction (F2), identified as 2-himachalen-6-ol. Treatment of HaCaT-ras A5 and HaCaT-ras II4 cells with F2 fraction resulted in the accumulation of cells in the sub-G1 apoptotic phase and decreased the population of cells in the S and G2/M phases. Additionally, F2 fraction treatment caused an up-regulation of the expression of pro-apoptotic (Bax) and down-regulation of the expression of anti-apoptotic (Bcl2) proteins. A decrease in the phosphorylation of AKT and ERK was also observed. Intraperitoneal treatment with F2 fraction (50 or 200\ua0mg/kg) in the DMBA/TPA skin carcinogenesis mouse model showed a significant inhibition of papilloma incidence (mice with papilloma), yield (number of papilloma/mouse) and volume (tumor relative size) at weeks 15, 18 and 21. Conclusion The present data reveal that F2 fraction has a remarkable antitumor activity against DMBA/TPA-induced skin carcinogenesis, an effect that may be mediated through inhibition of the MAPK/ERK and PI3K/AKT pathways
    corecore