106 research outputs found

    Biomarkers in peripheral arterial disease patients and near- and longer-term mortality

    Get PDF
    To determine in patients with peripheral arterial disease (PAD) whether novel biomarkers improve prediction of cardiovascular disease (CVD) mortality and total mortality

    Lack of associations of ten candidate coronary heart disease risk genetic variants and subclinical atherosclerosis in four U.S. populations: The Population Architecture using Genomics and Epidemiology (PAGE) study

    Get PDF
    A number of genetic variants have been discovered by recent genome-wide association studies for their associations with clinical coronary heart disease (CHD). However, it is unclear whether these variants are also associated with the development of CHD as measured by subclinical atherosclerosis phenotypes, ankle brachial index (ABI), carotid artery intima-media thickness (cIMT) and carotid plaque

    Genetics of Chronic Kidney Disease Stages Across Ancestries: The PAGE Study

    Get PDF
    BackgroundChronic kidney disease (CKD) is common and disproportionally burdens United States ethnic minorities. Its genetic determinants may differ by disease severity and clinical stages. To uncover genetic factors associated CKD severity among high-risk ethnic groups, we performed genome-wide association studies (GWAS) in diverse populations within the Population Architecture using Genomics and Epidemiology (PAGE) study.MethodsWe assembled multi-ethnic genome-wide imputed data on CKD non-overlapping cases [4,150 mild to moderate CKD, 1,105 end-stage kidney disease (ESKD)] and non-CKD controls for up to 41,041 PAGE participants (African Americans, Hispanics/Latinos, East Asian, Native Hawaiian, and American Indians). We implemented a generalized estimating equation approach for GWAS using ancestry combined data while adjusting for age, sex, principal components, study, and ethnicity.ResultsThe GWAS identified a novel genome-wide associated locus for mild to moderate CKD nearby NMT2 (rs10906850, p = 3.7 × 10-8) that replicated in the United Kingdom Biobank white British (p = 0.008). Several variants at the APOL1 locus were associated with ESKD including the APOL1 G1 rs73885319 (p = 1.2 × 10-9). There was no overlap among associated loci for CKD and ESKD traits, even at the previously reported APOL1 locus (p = 0.76 for CKD). Several additional loci were associated with CKD or ESKD at p-values below the genome-wide threshold. These loci were often driven by variants more common in non-European ancestry.ConclusionOur genetic study identified a novel association at NMT2 for CKD and showed for the first time strong associations of the APOL1 variants with ESKD across multi-ethnic populations. Our findings suggest differences in genetic effects across CKD severity and provide information for study design of genetic studies of CKD in diverse populations

    Fine mapping of QT interval regions in global populations refines previously identified QT interval loci and identifies signals unique to African and Hispanic descent populations

    Get PDF
    BACKGROUND: The electrocardiographically measured QT interval (QT) is heritable and its prolongation is an established risk factor for several cardiovascular diseases. Yet, most QT genetic studies have been performed in European ancestral populations, possibly reducing their global relevance. OBJECTIVE: To leverage diversity and improve biological insight, we fine mapped 16 of the 35 previously identified QT loci (46%) in populations of African American (n = 12,410) and Hispanic/Latino (n = 14,837) ancestry. METHODS: Racial/ethnic-specific multiple linear regression analyses adjusted for heart rate and clinical covariates were examined separately and in combination after inverse-variance weighted trans-ethnic meta-analysis. RESULTS: The 16 fine-mapped QT loci included on the Illumina Metabochip represented 21 independent signals, of which 16 (76%) were significantly (P-value≤9.1×10-5) associated with QT. Through sequential conditional analysis we also identified three trans-ethnic novel SNPs at ATP1B1, SCN5A-SCN10A, and KCNQ1 and three Hispanic/Latino-specific novel SNPs at NOS1AP and SCN5A-SCN10A (two novel SNPs) with evidence of associations with QT independent of previous identified GWAS lead SNPs. Linkage disequilibrium patterns helped to narrow the region likely to contain the functional variants at several loci, including NOS1AP, USP50-TRPM7, and PRKCA, although intervals surrounding SLC35F1-PLN and CNOT1 remained broad in size (>100 kb). Finally, bioinformatics-based functional characterization suggested a regulatory function in cardiac tissues for the majority of independent signals that generalized and the novel SNPs. CONCLUSION: Our findings suggest that a majority of identified SNPs implicate gene regulatory dysfunction in QT prolongation, that the same loci influence variation in QT across global populations, and that additional, novel, population-specific QT signals exist

    Imputation of coding variants in African Americans: better performance using data from the exome sequencing project

    Get PDF
    Summary: Although the 1000 Genomes haplotypes are the most commonly used reference panel for imputation, medical sequencing projects are generating large alternate sets of sequenced samples. Imputation in African Americans using 3384 haplotypes from the Exome Sequencing Project, compared with 2184 haplotypes from 1000 Genomes Project, increased effective sample size by 8.3–11.4% for coding variants with minor allele frequency <1%. No loss of imputation quality was observed using a panel built from phenotypic extremes. We recommend using haplotypes from Exome Sequencing Project alone or concatenation of the two panels over quality score-based post-imputation selection or IMPUTE2’s two-panel combination

    Multiethnic Exome-Wide Association Study of Subclinical AtherosclerosisCLINICAL PERSPECTIVE

    Get PDF
    The burden of subclinical atherosclerosis in asymptomatic individuals is heritable and associated with elevated risk of developing clinical coronary heart disease (CHD). We sought to identify genetic variants in protein-coding regions associated with subclinical atherosclerosis and the risk of subsequent CHD
    • …
    corecore