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ABSTRACT

Summary: Although the 1000 Genomes haplotypes are the most

commonly used reference panel for imputation, medical sequencing

projects are generating large alternate sets of sequenced samples.

Imputation in African Americans using 3384 haplotypes from the

Exome Sequencing Project, compared with 2184 haplotypes from

1000 Genomes Project, increased effective sample size by

8.3–11.4% for coding variants with minor allele frequency 51%.

No loss of imputation quality was observed using a panel built from

phenotypic extremes. We recommend using haplotypes from Exome

Sequencing Project alone or concatenation of the two panels over

quality score-based post-imputation selection or IMPUTE2’s two-

panel combination.

Contact: yunli@med.unc.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Genotype imputation is a common practice for both genotyping

(De Bakker et al., 2008; Li et al., 2009; Marchini and Howie,

2010) and sequencing studies (Fridley et al., 2010; Li et al., 2011).

Increasingly large reference panels available in the public domain

[e.g. those from the 1000 Genomes Project (The 1000 Genomes

Project Consortium, 2010, 2012) and UK10K project (Futema

et al., 2012)] together with improved statistical methods (Howie
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et al., 2012; Liu et al., 2013) have enhanced imputation quality,
especially for rare variants with minor allele frequency (MAF)

55%. These improvements have resulted in both discovery and
refined mapping of association with complex traits (Auer et al.,

2012; Holm et al., 2011; Huang et al., 2012). However, few stu-
dies have examined the use of large study-specific reference

panels, particularly the use of exome sequencing-derived panels
in admixed populations. Here, we present a new resource for

imputation in African Americans, built from 1692 African

Americans sequenced by the Exome Sequencing Project (ESP)
(Tennessen et al., 2012). We assessed the use of the ESP data as

an imputation reference panel and compared the results with
those obtained using the 1000 Genomes Project Phase1

(1000G; version 3, March 2012 release) (The 1000 Genomes
Project Consortium, 2012) data. Additionally, we evaluated the

potential consequences of using a reference panel built from sam-

ples selected on the basis of phenotypic extremes or disease status
instead of a population-based random sample. Lastly, we com-

pared multiple approaches to combine the ESP and 1000G
panels for the imputation of rare coding variants.

2 METHODS

2.1 Exome Sequencing Project

2.1.1 ESP and African American Participants The complete ESP

dataset (Fu et al., 2012) consists of whole exome data for 6823 individ-

uals. Samples were sequenced at the University of Washington

(SeattleGO) and the Broad Institute (BroadGO). Among the 6823 indi-

viduals, 1692 participants were African Americans with genome-wide

association data available for analysis. The 1692 African Americans

ESP samples include 845 from the Women’s Health Initiative (WHI)

study (The Women’s Health Initiative Study Group, 1998) as part of

the WHI Sequencing Project (WHISP), and a total of 847 including

Atherosclerosis Risk in Communities (ARIC; Muntaner et al., 1998)

(N¼ 282), Jackson Heart Study (JHS; Taylor et al., 2005) (N¼ 366),

Multi-Ethnic Study of Atherosclerosis (MESA; Bild et al., 2002)

(N¼ 146) and Coronary Artery Risk Development in Young Adults

(CARDIA; Friedman et al., 1988) (N¼ 53) as part of HeartGO. Most

WHISP and HeartGO participants were selected on the basis of primary

phenotypes for ESP, which included extremes of body mass index, blood

pressure, low-density lipoprotein (LDL), cholesterol, early onset myocar-

dial infarction (MI) cases and controls, ischemic stroke with either early

onset or positive family history. Approximately 15% of samples were

selected because of having non-missing data for a selected set of core

phenotypes, but were not ascertained based on trait values.

2.2 Exome Sequencing

Exome sequencing was performed at the University of Washington

(SeattleGO) and the Broad Institute (BroadGO). Initial quality control

(QC) on all samples involved sample quantification (PicoGreen), con-

firmation of high-molecular weight DNA, fingerprint genotyping and

sex determination. Samples were failed if total mass, concentration,

integrity of DNA or quality of preliminary genotyping data was too

low or sex typing was discordant. Following QC, 2mg of extracted

genomic DNA was subjected to shotgun library preparation and exome

capture as previously described (Tennessen et al., 2012).

2.2.1 Genotype Calling For read mapping and variant analysis, sam-

ples were aligned to a human reference (hg19) using Burrows–Wheeler

Aligner (Li and Durbin, 2009). Variant detection and genotyping were

performed on both exomes and flanking 50bp of intronic sequence.

Typical mean coverage of the target was 60–80�. Variant data for each

sample were formatted (variant call format) as ‘raw’ calls for all samples.

Filters considered the total read depth, the number of individuals with

coverage at the site, the fraction of variant reads in each heterozygote, the

ratio of forward and reverse strand reads carrying reference and variant

alleles and the average position of variant alleles along a read. Variant

calling was performed across all 6515 samples at the University of

Michigan (UMich). Only single nucleotide polymorphisms (SNPs) that

passed the UMich support vector machine quality filter were retained for

analysis. Details were previously described (Fu et al., 2012).

2.2.2 Reference Panel Construction A reference panel of 2163 indi-

viduals (including the 1692 African Americans used in this study and 471

European Americans) was constructed. All of the 2163 individuals have

both Genome-wide association study (GWAS; Affymetrix 6.0) genotypes

and whole exome sequencing data. When combining the two sources of

data, a total of 375024 bi-allelic autosomal SNPs with minor allele count

�4 (in the 2163 reference panel subjects) did not overlap with the 702 205

GWAS SNPs. There were 10130 SNPs that overlapped between ESP

and the 702205 GWAS markers. SNPs with concordance595% were

removed (65 SNPs). For overlapping SNPs that passed this concordance

filter, GWAS genotype was retained for consistency with the target indi-

viduals. A total of 1 077 164 autosomal SNPs were included in the ref-

erence panel. These 1 077164 markers were phased across all 2163

samples using BEAGLE v3.3.1 (Browning and Yu, 2009).

2.2.3 ESP ‘Extreme’ and ‘Normal’ Panel Construction The 1692

ESP African Americans were selected based on the following phenotypic

traits: (i) LDL (N¼ 254: 131 with high LDL and 123 with low LDL),

(ii) blood pressure (N¼ 247: 132 with high blood pressure and 115 with

low blood pressure), (iii) body mass index (BMI, N¼ 609: 429 with high

BMI and 180 with normal to low BMI), (iv) early onset MI (EOMI,

N¼ 324: 39 EOMI cases and 285 EOMI controls), (v) stroke (N¼ 40,

all cases) and (vi) random samples (N¼ 218). We constructed one ESP

‘Extreme’ panel and one ESP ‘Normal’ panel each with 853 individuals.

The ESP ‘Extreme’ panel included (i) 254 individuals with high/low LDL

(131 with high LDL and 123 with low LDL), (ii) 247 individuals with

high/low blood pressure (132 with high blood pressure and 115 with low

blood pressure), (iii) 40 stroke cases, (iv) 39 EOMI cases and (v) 273

individuals with high BMI. The ESP ‘Normal’ panel consists of 80%

individuals with ‘non-extreme’ phenotypes and 20% with extreme pheno-

types so as to better represent a population sample. Individuals with ‘non-

extreme’ phenotypes (N¼ 683) are from random sample, EOMI controls

and low BMI group. Individuals with extreme phenotypes (N¼ 170) are

from high (N¼ 85) and low LDL (N¼ 85) group.

2.2.4 The 1000 Genomes Project (1000G) The 1000 Genomes

Phase1 data were downloaded from http://www.sph.umich.edu/csg/yli/

mach/download/1000G.2012-03-14.html. Details regarding the gener-

ation of the data can be found in the Phase 1 article (The 1000

Genomes Project Consortium, 2012).

2.3 Target African Americans

2.3.1 GWAS Data All of the 1661 target African Americans in this

study were genotyped using the Affymetrix 6.0 genotyping platform as

part of the WHI SNP Health Association Resource study. Before phasing

and imputation, we removed Affymetrix 6.0 SNPs with genotype call

rates 590%, or Hardy–Weinberg exact test (Wigginton et al., 2005)

P510�6 or MAF 51%. QC details were described previously (Auer

et al., 2012; Reiner et al., 2011).

2.3.2 Metabochip data All of the 1661 target African Americans in

this study were also genotyped using the Metabochip (Voight et al., 2012)

in an attempt to generalize genetic effects across racial groups by the
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WHI Population Architecture using Genomics and Epidemiology

(PAGE) study. Standard QC was performed, including removal of mar-

kers with genotype call rate595% or Hardy–Weinberg P510�6, as well

as exclusion of individuals who showed excess heterozygosity, were part

of an apparent first-degree relative pair, or were ancestry outliers as

determined by Eigensoft (Price et al., 2006). Details can be found in

the PAGE Metabochip article (Buyske et al., 2012).

Genotypes at the Metabochip SNPs were not used for imputation but

rather used for assessment of imputation quality. In total 5035 markers,

which were on Metabochip, in 1000G and in ESP, but not on Affymetrix

6.0, were used for imputation quality assessment.

2.3.3 Overlap with ESP African Americans African Americans

present in ESP were not included as target. In other words, individuals

in the reference ESP and the target were mutually exclusive. In addition,

we removed any target with PLINK (Purcell et al., 2007) estimated iden-

tity-by-descent (IBD) �0.2 with any reference individual such that our

final target set did not contain any apparent first-degree relative with the

reference ESP.

2.3.4 Imputation using IMPUTE2 In themain text, unless otherwise

specified, we present results usingminimac for imputation. Supplementary

Figure S5 and Supplementary Table S7 showed that our recommendation

of ESP alone or concatenation of ESP with 1000G (ESP_U_1000G) over

1000G still held when IMPUTE2was used for imputation.We note that in

the main text, our recommendation against IMPUTE2’s two panel mode

(option 3: ESPþ 1000G) was confounded by software/method choice:

ESP alone or ESP_U_1000G using minimac performed better than

IMPUTE2’s ESPþ 1000G, but when using IMPUTE2 for all, ESP

alone or ESP_U_1000G performed similarly as ESPþ 1000G.

3 RESULTS

3.1 Comparison of imputation quality between ESP-based

and 1000G-based imputation

We first performed imputation, using either ESP or 1000G as

reference, into 1661 African Americans in the WHI study (the

‘target’ sample) who were genotyped by both the Affymetrix 6.0

(Auer et al., 2012) and the Illumina Metabochip array (Buyske

et al., 2012; Liu et al., 2012). We used MaCH (Li et al., 2010), a
hidden Markov model that leverages linkage disequilibrium in-

formation among samples of unrelated individuals, to pre-phase

the 1661 WHI African Americans at the Affymetrix 6.0 markers.

The ESP reference panel was built from 1692 African Americans

with genotypes from both the Affymetrix 6.0 platform and whole

exome sequencing. These genotypes were merged and phased
using BEAGLE (Browning and Yu, 2009). Imputation into the

1661 target WHI African Americans was performed with mini-

mac (Howie et al., 2012) (similar results were obtained with

IMPUTE2; see Methods) using their Affymetrix 6.0 genotypes

only; genotypes from the Metabochip genotyping were saved for
evaluation. Following the literature (Browning and Yu, 2009; Li

et al., 2010), we used dosage r2 [squared Pearson correlation

between imputed dosages (ranging continuously from 0 to 2)

and experimental genotypes (coded as 0, 1 or 2)], which directly

determines effective sample size for subsequent association

analysis (Pritchard and Przeworski, 2001), to gauge imputation
quality. We also use Rsq, the estimated dosage r2 generated

by minimac, as the post-imputation QC metric. We observed

8.3–11.4% increases in average dosage r2 for variants with

MAF51% using the ESP reference panel compared with the

1000G reference panel (paired Wilcoxon P51.3� 10�4 –

4.1� 10�16). Such increases were observed without applying

any post-imputation QC, that is, when every imputed variant

was retained. Similarly increased dosage r2 was observed across

a broad range of post-imputation QC stringency (removing

0–90% of variants; Fig. 1 and Supplementary Fig. S1 and

Supplementary Table S1). As imputation is routinely performed

in 10 000–100000 individuals (Auer et al., 2012; Cho et al., 2012;

Dastani et al., 2012; Holm et al., 2011; Teslovich et al., 2010),

such an increase would correspond to increasing the sample size

for association testing by 1000–10 000 samples.
Because the ESP panel is larger and consists entirely of African

Americans, we conducted more comparisons by assessing the

performance of 10 random subsets from ESP of the same size

as 1000G (both for the full 1000G panel [Number of haplotypes

(H)¼ 1092� 2; reference panels termed ESP.1092 and

1000G.1092] and the most relevant panel [AFRþEUR,

H¼ 625� 2; reference panels termed ESP.625 and 1000G.625]).

The difference in effective sample size derived from the ESP and

1000G reference panels, although smaller, remains (Fig. 2 and

Supplementary Table S2). For example, when comparing

ESP.1092 with 1000G.1092 and retaining all imputed variants

in the analysis (no post-imputation QC), we observed an average

dosage r2 increase of 11.3, 4.6 and 6.1% for variants with MAF

50.2%, 0.2–0.5% and 0.5–1%, respectively. The corresponding

dosage r2 increases for a comparison of ESP.625 with 1000G.625

were 13.9%, 1.0 and 3.1%, respectively. The superior perform-

ance of ESP over 1000G was likely driven by two primary

factors. First, genotypes for rare variants from ESP were derived

from high coverage sequencing, whereas those from 1000G were

in part from low coverage sequencing (1000G data we used here

are the integrated panel constructed from low coverage whole

genome sequencing, deep exome sequencing and SNP array gen-

otyping). Second, ESP African Americans (�50% also from

WHI, detailed in Materials and Methods) were better matched

to the ‘target’ WHI African Americans for ancestry than were

the samples in the 1000G panel, which were pooled from several

populations of European, African and African American ancestry.

Fig. 1. Comparison of dosage r2 between ESP-based and 1000G-based

imputation. The x-axis is the proportion of SNPs that were removed

based on elevated Rsq threshold (QC). The y-axis is the mean dosage

r2 (squared Pearson correlation between imputed dosages and experimen-

tal genotypes)
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As expected, better quality imputation using the ESP panel

produces a larger number of well-imputed rare coding variants

than using the 1000G panel (Rsq40.6 for MAF50.5%; detailed

in Table 1). For example, the number of well-imputed variants

was 2.28, 2.83, and 1.54 times greater than that from 1000G for

MAF 50.2, 0.2–0.5 and 0.5–1%, respectively (Table 1). The

boost in imputation quality as well as in the number of well-

imputed markers is expected to enhance power for testing asso-

ciation with phenotypic traits. For example, out of the eight

novel blood trait associated variants reported in Auer et al.

(Auer et al., 2012), two are not in 1000G but ESP only

(Supplementary Table S3).

3.2 Impact of imputation reference panel constructed from

subjects selected based on extreme phenotypes

Many subjects sequenced in ESP were selected on the basis of

phenotypic extremes or disease status (detailed in Materials and

Methods), an approach that has been shown to increase power

for association testing of the specific phenotype (Barnett et al.,

2013; Guey et al., 2011; Kryukov et al., 2009). To our know-

ledge, the consequences of such a design for developing an

imputation reference panel have not been previously evaluated.

To this end, we constructed two ESP-derived reference panels:

‘ESP.extreme’ and ‘ESP.normal’ each of size H¼ 853� 2. The

former included 254 African Americans from LDL cholesterol

extremes, 247 from blood pressure extremes, 40 stroke cases, 39

early onset MI (EOMI) cases and 273 with extremely high BMI.

The latter included 85 samples with high LDL, 85 with low LDL

and 683 from the ‘middle’ of the phenotype distributions. We

observed no loss of imputation quality using the ‘Extreme’ panel.

(Fig. 3 and Supplementary Table S4).

3.3 Alternative options to use or combine ESP and 1000G

reference panels

Although our results suggested that the ESP panel led to sub-

stantially improved imputation accuracy of rare coding variants

compared with the 1000G panel, the combination of the two

panels could potentially result in even better performance than

either one individually. We considered the following four op-

tions. The default option, Option 0, was to select a single panel

a priori based on reference panel size, marker density and ances-

try match. In this case, Option 0 would be the ESP reference

panel alone, as it contains more haplotypes (3384 over 2184 in

1000G), greater marker density in exons and a better ancestry

match with the target African Americans. Option 1 was to first

impute using each panel separately, and then for each marker to

select the one with higher Rsq. Option 2 was to impute using a

concatenated panel of the two (ESP_U_1000G). Option 3 was to

impute using IMPUTE2, which allows two separate reference

panels (ESPþ 1000G).
The best option among the four was the concatenation of

the two panels (Option 2) with ESP alone (Option 0), a close

second best. For example, the average dosage r2 increased by

1.8%, 2.3% and 1.5%, respectively, for markers with MAF

50.2, 0.2–0.5 and 0.5–1% using Option 2 over Option 0

(Supplementary Fig. S2 and Supplementary Table S5). We

observed no noticeable gains using Option 1 compared with

Fig. 3. Comparison of dosage r2 between ESP.extreme and ESP.normal

imputation. The x-axis is the proportion of SNPs that were removed

based on elevated Rsq threshold (QC). The y-axis is the mean dosage

r2 (squared Pearson correlation between imputed dosages and experimen-

tal genotypes)

Fig. 2. Comparison of dosage r2 between ESP and 1000G full/relevant

panel imputation. The x-axis is the proportion of SNPs that were

removed based on elevated Rsq threshold (QC). The y-axis is the mean

dosage r2 (squared Pearson correlation between imputed dosages and

experimental genotypes)

Table 1. Number and percentage of well-imputed exonic variants

MAF Number (%) of well-imputeda markers ESP:1000G

ratio (Number

of well-imputed)ESP 1000G

0–0.2% 17606 (31.8) 7713 (3.0) 2.28

0.2–0.5% 26255 (70.0) 9283 (26.9) 2.83

0.5–1% 21377 (92.1) 13882 (62.9) 1.54

1–3% 29784 (96.7) 26466 (90.7) 1.13

3–5% 11490 (96.9) 11043 (96.0) 1.04

5–50% 40500 (98.0) 39849 (96.3) 1.02

aWell-imputed is defined such that the average Rsq of the QCþmarkers within

each MAF category is40.8.
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Option 0 with differences in dosage r2 in the range of 0.02–1.5%

(Supplementary Fig. S3 and Supplementary Table S6). Therefore,
we would not recommend using Option 1, the Rsq-based selection,
because higher Rsq does not guarantee better imputation quality.

In fact a low quality reference panel could lead to poorly estimated
Rsq values. Finally, IMPUTE2’s ability to combine two reference
panels (Option 3), led to decreased imputation quality compared

with Option 0. For example, dosage r2 decreased by an average of
7.3, 4.3 and 3.9% for markers with MAF 0.2, 0.2–0.5 and 0.5–1%

(Fig. 4 and Supplementary Fig. S4 and Supplementary Table S7).
Although less accurate, the convenience provided by IMPUTE2’s
approach warrants closer consideration. Decreases in quality

could be due to software implementation because we used mini-
mac for options 0–2 and IMPUTE2 for option 3. But importantly,
our recommendation of concatenation of the two or ESP alone

over 1000G alone or post-imputation Rsq-based selection holds
when IMPUTE2 was used for all four options (see ‘Imputation

using IMPUTE2’ in Materials and Methods, Supplementary Fig.
S5 and Supplementary Table S8).

4 DISCUSSION

We note that ESP is heavily enriched for extremes from several
phenotypes rather than a single phenotype. Thus, it is unclear
whether these results generalize to a design where sequenced sub-

jects are selected based on extremes for a single phenotype. We
did not attempt to select one phenotype for evaluation, as doing

so would reduce our reference size to below 300, which we view
as of little value for the imputation of rare variants. We expect
such ‘Extreme’ panels to make little difference for imputation

overall and may affect imputation in the specific trait associated
regions when the causal variant(s) exert large effect(s).
Although we recommend the concatenation of ESP and

1000G, we observed only modest gains in imputation quality
by combining the two. Previous studies suggest that these
gains may depend in part on the ethnic make-up of the study

subjects (Browning and Yu, 2009) and whether 1000G data add

substantial haplotype diversity. These gains should be weighed
against the logistical challenges of combining data from multiple
sources to avoid batch effects (e.g. mismatched strands, incon-

sistent marker naming schemes or systematic differences in geno-
type calling, QC or phasing).
In summary, we found that the ESP African American refer-

ence panel outperformed the 1000G reference panel for the im-

putation of rare coding variants in African Americans, both in
terms of imputation quality, the number of imputable markers
and consequently power for trait association testing. The finding

was robust to adjustment of reference size and matching on eth-
nicity. We did not observe loss of imputation quality because of
the ESP design for enriched sequencing of subjects selected for

phenotypic extremes. Regarding the optimal way to combine
the two panels, our evaluations suggested that ESP alone or
concatenation of the ESP and 1000G reference panels was

superior to either post-imputation selection based on Rsq or
IMPUTE2’s implementation of two separate reference panels.
We focused here on imputation of coding variants from ESP.

However, we believe that the conclusions drawn here apply to
rare variants across the genome as recently reported by several
whole-genome sequencing-based studies (Fuchsberger et al.,

2012; Sanna, 2012) in individuals of European ancestry. These
studies and our present work strongly suggest that population
matched samples, even in diverse populations such as African

Americans, can clearly outperform 1000G imputation perform-
ance. Therefore, we recommend investigators routinely consider
sequencing for the design (Kang et al., 2013) and analysis of the

study samples.
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