306 research outputs found

    Metabolomics to unveil and understand phenotypic diversity between pathogen populations

    Get PDF
    Visceral leishmaniasis is caused by a parasite called Leishmania donovani, which every year infects about half a million people and claims several thousand lives. Existing treatments are now becoming less effective due to the emergence of drug resistance. Improving our understanding of the mechanisms used by the parasite to adapt to drugs and achieve resistance is crucial for developing future treatment strategies. Unfortunately, the biological mechanism whereby Leishmania acquires drug resistance is poorly understood. Recent years have brought new technologies with the potential to increase greatly our understanding of drug resistance mechanisms. The latest mass spectrometry techniques allow the metabolome of parasites to be studied rapidly and in great detail. We have applied this approach to determine the metabolome of drug-sensitive and drug-resistant parasites isolated from patients with leishmaniasis. The data show that there are wholesale differences between the isolates and that the membrane composition has been drastically modified in drug-resistant parasites compared with drug-sensitive parasites. Our findings demonstrate that untargeted metabolomics has great potential to identify major metabolic differences between closely related parasite strains and thus should find many applications in distinguishing parasite phenotypes of clinical relevance

    The Efficacy of Pharmacotherapy for Decreasing the Expansion Rate of Abdominal Aortic Aneurysms: A Systematic Review and Meta-Analysis

    Get PDF
    BACKGROUND: Pharmacotherapy may represent a potential means to limit the expansion rate of abdominal aortic aneurysms (AAAs). Studies evaluating the efficacy of different pharmacological agents to slow down human AAA-expansion rates have been performed, but they have never been systematically reviewed or summarized. METHODS AND FINDINGS: Two independent reviewers identified studies and selected randomized trials and prospective cohort studies comparing the growth rate of AAA in patients with pharmacotherapy vs. no pharmacotherapy. We extracted information on study interventions, baseline characteristics, methodological quality, and AAA growth rate differences (in mm/year). Fourteen prospective studies met eligibility criteria. Five cohort studies raised the possibility of benefit of beta-blockers [pooled growth rate difference: -0.62 mm/year, (95%CI, -1.00 to -0.24)], but this was not confirmed in three beta-blocker RCTs [pooled RCT growth rate difference: -0.05 mm/year (-0.16 to 0.05)]. Statins have been evaluated in two cohort studies that yield a pooled growth rate difference of -2.97 (-5.83 to -0.11). Doxycycline and roxithromycin have been evaluated in two RCTs that suggest possible benefit [pooled RCT growth rate difference: -1.32 mm/year (-2.89 to 0.25)]. Studies assessing NSAIDs, diuretics, calcium channel blockers and ACE inhibitors, meanwhile, did not find statistically significant differences. CONCLUSIONS: Beta-blockers do not appear to significantly reduce the growth rate of AAAs. Statins and other anti-inflammatory agents appear to hold promise for decreasing the expansion rate of AAA, but need further evaluation before definitive recommendations can be made

    Disease- and age-related changes in histone acetylation at gene promoters in psychiatric disorders

    Get PDF
    Increasing evidence suggests that epigenetic factors have critical roles in gene regulation in neuropsychiatric disorders and in aging, both of which are typically associated with a wide range of gene expression abnormalities. Here, we have used chromatin immunoprecipitation-qPCR to measure levels of acetylated histone H3 at lysines 9/14 (ac-H3K9K14), two epigenetic marks associated with transcriptionally active chromatin, at the promoter regions of eight schizophrenia-related genes in n=82 postmortem prefrontal cortical samples from normal subjects and those with schizophrenia and bipolar disorder. We find that promoter-associated ac-H3K9K14 levels are correlated with gene expression levels, as measured by real-time qPCR for several genes, including, glutamic acid decarboxylase 1 (GAD1), 5-hydroxytryptamine receptor 2C (HTR2C), translocase of outer mitochondrial membrane 70 homolog A (TOMM70A) and protein phosphatase 1E (PPM1E). Ac-H3K9K14 levels of several of the genes tested were significantly negatively associated with age in normal subjects and those with bipolar disorder, but not in subjects with schizophrenia, whereby low levels of histone acetylation were observed in early age and throughout aging. Consistent with this observation, significant hypoacetylation of H3K9K14 was detected in young subjects with schizophrenia when compared with age-matched controls. Our results demonstrate that gene expression changes associated with psychiatric disease and aging result from epigenetic mechanisms involving histone acetylation. We further find that treatment with a histone deacetylase (HDAC) inhibitor alters the expression of several candidate genes for schizophrenia in mouse brain. These findings may have therapeutic implications for the clinical use of HDAC inhibitors in psychiatric disorders

    Serum interleukin-5 levels are elevated in mild and moderate persistent asthma irrespective of regular inhaled glucocorticoid therapy

    Get PDF
    BACKGROUND: Interleukin-5 (IL-5) is thought to play a pivotal role in the pathogenesis of asthma. High levels of circulating IL-5 have been documented in acute asthma. However, serum IL-5 levels in mild to moderate asthmatics and the influence of regular use of inhaled glucocorticoids, is not known. METHODS: Fifty-six asthmatics and 56 age and sex matched controls were recruited prospectively from an outpatient department. Information on asthma severity and treatment was gathered by a questionnaire. Serum IL-5, total IgE and specific IgE levels were measured in a blinded fashion. RESULTS: There were 32 atopic and 24 non-atopic mild-to-moderate asthmatics. The median serum IL-5 levels in atopic asthmatics (9.5 pg/ml) and in non-atopic asthmatics (8.1 pg/ml) were significantly higher than in normal controls (4.4 pg/ml, both p < 0.003). However, median serum IL-5 levels in atopic and non-atopic asthmatics were not significantly different. The median serum IL-5 level was insignificantly higher in fourteen moderate persistent asthmatics (10.6 pg/ml) compared to forty-two mild persistent asthmatics (7.3 pg/ml) (p = 0.13). The median serum IL-5 levels in asthmatics using regular inhaled steroids (7.8 pg/ml) was not significantly different from those not using inhaled steroids (10.2 pg/ml). Furthermore, serum total IgE levels and eosinophil counts were not significantly different in those using versus those not using inhaled glucocorticoids. CONCLUSION: Serum IL-5 levels are elevated in mild and moderate persistent atopic and non-atopic asthmatics. Regular use of inhaled glucocorticoids may not abrogate the systemic Th2 type of inflammatory response in mild-moderate persistent asthma

    Metabolic Variation during Development in Culture of Leishmania donovani Promastigotes

    Get PDF
    The genome sequencing of several Leishmania species has provided immense amounts of data and allowed the prediction of the metabolic pathways potentially operating. Subsequent genetic and proteomic studies have identified stage-specific proteins and putative virulence factors but many aspects of the metabolic adaptations of Leishmania remain to be elucidated. In this study, we have used an untargeted metabolomics approach to analyze changes in the metabolite profile as promastigotes of L. donovani develop during in vitro cultures from logarithmic to stationary phase. The results show that the metabolomes of promastigotes on days 3–6 of culture differ significantly from each other, consistent with there being distinct developmental changes. Most notable were the structural changes in glycerophospholipids and increase in the abundance of sphingolipids and glycerolipids as cells progress from logarithmic to stationary phase

    Progressive Purkinje Cell Degeneration in tambaleante Mutant Mice Is a Consequence of a Missense Mutation in HERC1 E3 Ubiquitin Ligase

    Get PDF
    The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domains have been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2) and small (HERC3-6). The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a G⇔A transition at position 1448, causing a Gly to Glu substitution (Gly483Glu) in the highly conserved N-terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein in Purkinje cell physiology

    Recovery of ζ-chain expression and changes in spontaneous IL-10 production after PSA-based vaccines in patients with prostate cancer

    Get PDF
    Circulating T lymphocytes of patients with prostate cancer have been reported to have functional deficits, including low or absent ζ-chain expression. To determine whether these functional impairments could be reversed by prostate specific antigen-based vaccination therapy, 10 patients treated with recombinant human prostate specific antigen plus GM-CSF and eight others receiving prostate specific antigen plus oil emulsion in two pilot clinical trials were evaluated prior to and after vaccination for several immunologic end points, including ζ-chain expression and cytokine production by circulating T cells as well as the frequency of T cells able to respond to prostate specific antigen in ELISPOT assays. The flow cytometry assay for ζ-chain expression was standardized to allow for a reliable comparison of pre- vs post-vaccination samples. Prior to therapy, the patients were found to have significantly lower ζ-chain expression in circulating CD3+ cells and a higher percentage of ζ-chain negative CD3+ and CD4+ cells than normal donors. The patients' peripheral blood mononuclear cells spontaneously produced more IL-10 ex vivo than those of normal controls. After vaccination, recovery of ζ-chain expression was observed in 50% of patients in both clinical trials. Also, spontaneous IL-10 secretion by peripheral blood mononuclear cells decreased following immunotherapy in patients treated with prostate specific antigen and GM-CSF. The frequency of prostate specific antigen-reactive T cells was detectable in 7 out of 18 patients vs 4 out of 18 patients prior to vaccination. Only one of 18 patients was a clinical responder. The vaccine had stimulatory effects on the patients' immune system, but post-vaccine immune recovery could not be correlated to progression-free survival in this small cohort of patients with prostate cancer

    The Reelin Receptors Apoer2 and Vldlr Coordinate the Patterning of Purkinje Cell Topography in the Developing Mouse Cerebellum

    Get PDF
    The adult cerebellar cortex is comprised of reproducible arrays of transverse zones and parasagittal stripes of Purkinje cells. Adult stripes are created through the perinatal rostrocaudal dispersion of embryonic Purkinje cell clusters, triggered by signaling through the Reelin pathway. Reelin is secreted by neurons in the external granular layer and deep cerebellar nuclei and binds to two high affinity extracellular receptors on Purkinje cells-the Very low density lipoprotein receptor (Vldlr) and apolipoprotein E receptor 2 (Apoer2). In mice null for either Reelin or double null for Vldlr and Apoer2, Purkinje cell clusters fail to disperse. Here we report that animals null for either Vldlr or Apoer2 individually, exhibit specific and parasagittally-restricted Purkinje cell ectopias. For example, in mice lacking Apoer2 function immunostaining reveals ectopic Purkinje cells that are largely restricted to the zebrin II-immunonegative population of the anterior vermis. In contrast, mice null for Vldlr have a much larger population of ectopic Purkinje cells that includes members from both the zebrin II-immunonegative and -immunopositive phenotypes. HSP25 immunoreactivity reveals that in Vldlr null animals a large portion of zebrin II-immunopositive ectopic cells are probably destined to become stripes in the central zone (lobules VI–VII). A small population of ectopic zebrin II-immunonegative Purkinje cells is also observed in animals heterozygous for both receptors (Apoer2+/−: Vldlr+/−), but no ectopia is present in mice heterozygous for either receptor alone. These results indicate that Apoer2 and Vldlr coordinate the dispersal of distinct, but overlapping subsets of Purkinje cells in the developing cerebellum
    corecore