21 research outputs found

    Effects of pulp and Na-bentonite amendments on the mobility of trace elements, soil enzymes activity and microbial parameters under ex situ aided phytostabilization

    Get PDF
    The objective of this study was to explore the potential use of pulp (by-product) from coffee processing and Na-bentonite (commercial product) for minimizing the environmental risk of Zn, Pb and Cd in soil collected from a former mine and zinc-lead smelter. The effects of soil amendments on the physicochemical properties of soil, the structural and functional diversity of the soil microbiome as well as soil enzymes were investigated. Moreover, biomass of Festuca arundinacea Schreb. (cultivar Asterix) and the uptake of trace elements in plant tissues were studied. The outdoor pot set contained the following soils: control soil (initial), untreated soil (without additives) with grass cultivation and soils treated (with additives) with and without plant development. All of the selected parameters were measured at the beginning of the experiment (t0), after 2 months of chemical stabilization (t2) and at the end of the aided phytostabilization process (t14). The obtained results indicated that both amendments efficiently immobilized the bioavailable fractions of Zn (87-91%) and Cd (70-83%) at t14; however, they were characterized by a lower ability to bind Pb (33-50%). Pulp and Na-bentonite drastically increased the activity of dehydrogenase (70- and 12-fold, respectively) at t14, while the activities of urease, acid and alkaline phosphatases differed significantly depending on the type of material that was added into the soil. Generally, the activities of these enzymes increased; however, the increase was greater for pulp (3.5-6-fold) than for the Na-bentonite treatment (1.3-2.2-fold) as compared to the control. Soil additives significantly influenced the composition and dynamics of the soil microbial biomass over the experiment. At the end, the contribution of microbial groups could be ordered as follows: gram negative bacteria, fungi, gram positive bacteria, actinomycetes regardless of the type of soil enrichment. Conversely, the shift in the functional diversity of the microorganisms in the treated soils mainly resulted from plant cultivation. Meanwhile, the highest biomass of plants at t14 was collected from the soil with Na-bentonite (6.7 g dw-1), while it was much lower in a case of pulp treatment (1.43-1.57 g dw-1). Moreover, the measurements of the heavy metal concentrations in the plant roots and shoots clearly indicated that the plants mainly accumulated metals in the roots but that the accumulation of individual metals depended on the soil additives. The efficiency of the accumulation of Pb, Cd and Zn by the roots was determined to be 124, 100 and 26% higher in the soil that was enriched with Nabentonite in comparison with the soil that was amended with pulp, respectively. The values of the soil indices (soil fertility, soil quality and soil alteration) confirmed the better improvement of soil functioning after its enrichment with the pulp than in the presence of Na-bentonite

    Evaluation of the Effects of Ag, Cu, ZnO and TiO2 Nanoparticles on the Expression Level of Oxidative Stress-Related Genes and the Activity of Antioxidant Enzymes in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis

    Get PDF
    Although the molecular response of bacteria exposed to metal nanoparticles (NPs) is intensively studied, many phenomena related to their survival, metal uptake, gene expression and protein production are not fully understood. Therefore, this work aimed to study Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs-induced alterations in the expression level of selected oxidative stress-related genes in connection with the activity of antioxidant enzymes: catalase (CAT), peroxidase (PER) and superoxide dismutase (SOD) in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis. The methodology used included: the extraction of total RNA and cDNA synthesis, the preparation of primers for selected housekeeping and oxidative stress genes, RT-qPCR reaction and the measurements of CAT, PER and SOD activities. It was established that the treatment of E. coli and S. epidermidis with NPs resulted mainly in the down-regulation of targeted genes, whilst the up-regulation of genes was confirmed in B. cereus. The greatest differences in the relative expression levels of tested genes occurred in B. cereus and S. epidermidis treated with TiO2-NPs, while in E. coli, they were observed under ZnO-NPs exposure. The changes found were mostly related to the expression of genes encoding proteins with PER and CAT-like activity. Among NPs, ZnO-NPs and Cu-NPs increased the activity of antioxidants in E. coli and B. cereus. In turn, TiO2-NPs had a major effect on enzymes activity in S. epidermidis. Considering all of the collected results for tested bacteria, it can be emphasised that the impact of NPs on the antioxidant system functioning was dependent on their type and concentration

    Insight into the antibacterial activity of selected metal nanoparticles and alterations within the antioxidant defence system in Escherichia coli, Bacillus cereus and Staphylococcus epidermidis

    Get PDF
    The antimicrobial activity of nanoparticles (NPs) is a desirable feature of various products but can become problematic when NPs are released into different ecosystems, potentially endangering living microorganisms. Although there is an abundance of advanced studies on the toxicity and biological activity of NPs on microorganisms, the information regarding their detailed interactions with microbial cells and the induction of oxidative stress remains incomplete. Therefore, this work aimed to develop accurate oxidation stress profiles of Escherichia coli, Bacillus cereus and Staphylococcus epidermidis strains treated with commercial Ag-NPs, Cu-NPs, ZnO-NPs and TiO2-NPs. The methodology used included the following determinations: toxicological parameters, reactive oxygen species (ROS), antioxidant enzymes and dehydrogenases, reduced glutathione, oxidatively modified proteins and lipid peroxidation. The toxicological studies revealed that E. coli was most sensitive to NPs than B. cereus and S. epidermidis. Moreover, NPs induced the generation of specific ROS in bacterial cells, causing an increase in their concentration, which further resulted in alterations in the activity of the antioxidant defence system and protein oxidation. Significant changes in dehydrogenases activity and elevated lipid peroxidation indicated a negative effect of NPs on bacterial outer layers and respiratory activity. In general, NPs were characterised by very specific nano-bio effects, depending on their physicochemical properties and the species of microorganism

    Application of hydrogeological and biological research for the lysimeter experiment performance under simulated municipal landfill condition

    Get PDF
    The size and chemical composition of leachates migrating into the aquifer are dependent on the parameters of the waste and the storage conditions. Lysimeter studies allow us to determine the size and chemical composition of leachates as well as the leachate water balance. Lysimeter studies were conducted on a 230-L municipal waste sample for 6 months. During the tests, the specific electrolyte conductivity, pH, Eh, and temperature, as well as the chemical composition, microbiological analysis, and profiling of physiological population level using EcoPlate™ microarrays were measured in collected leachate samples. During the entire experiment, the amounts of inflow and outflow from lysimeters were measured. To assess the existence of significant differences in the chemical component concentrations in leachates, use of Principal Component Analysis was taken into account. The maximum EC value from leachate from the lysimeter was 33 mS/cm. High concentrations of ammonium ion (up to approx. 1400 mg dm−3), chlorides (up to approx. 6800 mg dm−3), and iron (up to approx. 31 mg dm−3) were observed in the effluents. The number of enterococci in May reached 53,000 cells/100 ml. By contrast, the number of these microorganisms was about 15,000 and 16,000 CFU/100 ml in January and April, respectively. Community-level physiological profiling indicates that the activity and functional diversity of microorganisms were higher in the leachate samples obtained in winter compared to effluents collected from lysimeters in spring

    Impact of the Biological Cotreatment of the Kalina Pond Leachate on Laboratory Sequencing Batch Reactor Operation and Activated Sludge Quality

    Get PDF
    Hauling landfill leachate to o site urban wastewater treatment plants is a way to achieve pollutant removal. However, the implementation of biological methods for the treatment of landfill leachate can be extremely challenging. This study aims to investigate the e ect of blending wastewater with 3.5% and 5.5% of the industrial leachate from the Kalina pond (KPL) on the performance of sequencing batch reactor (SBR) and capacity of activated sludge microorganisms. The results showed that the removal e ciency of the chemical oxygen demand declined in the contaminated SBR from 100% to 69% and, subsequently, to 41% after the cotreatment with 3.5% and 5.5% of the pollutant. In parallel, the activities of the dehydrogenases and nonspecific esterases declined by 58% and 39%, and 79% and 81% after 32 days of the exposure of the SBR to 3.5% and 5.5% of the leachate, respectively. Furthermore, the presence of the KPL in the sewage a ected the sludge microorganisms through a reduction in their functional capacity as well as a decrease in the percentages of the marker fatty acids for di erent microbial groups. A multifactorial analysis of the parameters relevant for the wastewater treatment process confirmed unambiguously the negative impact of the leachate on the operation, activity, and structure of the activated sludge

    Impact of an engineered copper-titanium dioxide nanocomposite and parent substrates on the bacteria viability, antioxidant enzymes and fatty acid profiling

    Get PDF
    Due to the systematic increase in the production of nanomaterials (NMs) and their applications in many areas of life, issues associated with their toxicity are inevitable. In particular, the performance of heterogeneous NMs, such as nanocomposites (NCs), is unpredictable as they may inherit the properties of their individual components. Therefore, the purpose of this work was to assess the biological activity of newly synthesized Cu/TiO2-NC and the parent nanoparticle substrates Cu-NPs and TiO2-NPs on the bacterial viability, antioxidant potential and fatty acid composition of the reference Escherichia coli and Bacillus subtilis strains. Based on the toxicological parameters, it was found that B. subtilis was more sensitive to NMs than E. coli. Furthermore, Cu/TiO2-NC and Cu-NPs had an opposite e ect on both strains, while TiO2-NPs had a comparable mode of action. Simultaneously, the tested strains exhibited varied responses of the antioxidant enzymes after exposure to the NMs, with Cu-NPs having the strongest impact on their activity. The most considerable alternations in the fatty acid profiles were found after the bacteria were exposed to Cu/TiO2-NC and Cu-NPs. Microscopic images indicated distinct interactions of the NMs with the bacterial outer layers, especially in regard to B. subtilis. Cu/TiO2-NC generally proved to have less distinctive antimicrobial properties on B. subtilis than E. coli compared to its parent components. Presumably, the biocidal e ects of the tested NMs can be attributed to the induction of oxidative stress, the release of metal ions and specific electrochemical interactions with the bacterial cells

    Recultivation of heavy metal-contaminated soils using aided phytostabilization

    No full text
    The main anthropogenic sources of heavy metals in the environment are mining and smelting, refining and chemical industry, industrial and municipal wastes, transport as well as fertilizers and pesticides used in agriculture. Among all heavy metals, Cd, Cu, Pb, Hg, Ni and Zn are of major environmental and human health concern. The high toxicity of heavy metals causes the need to remove them from the contaminated soil using minimally invasive remediation solutions, called gentle remediation options (GRO). One of the attractive methods to reduce the labile fractions and toxicity of heavy metals in soil seems to be aided phytostabilization. It is a combination of phytostabilization using plants tolerant to trace metals and stabilizing soil against erosion with the initial chemical immobilization achieved by adding various organic and inorganic additives. The potential toxicity of trace elements depends on their specific form present in the environment, their reactivity, mobility, concentration and their availability to living organisms. The bioavailability of heavy metals in soil is constantly changing and depends on different physicochemical, biological and environmental parameters. Due to the fact that microorganisms respond quickly to the presence of stressors in the environment, the changes in metabolic activity, size and structure can be used as good indicators of the effectiveness of applied remediation technology for cleaning up contaminated sites and ecosystem quality

    Implications of Bacterial Adaptation to Phenol Degradation under Suboptimal Culture Conditions Involving Stenotrophomonas maltophilia KB2 and Pseudomonas moorei KB4

    No full text
    Despite the well-described abundance of phenol-degrading bacteria, knowledge concerning their degradation abilities under suboptimal conditions is still very limited and needs to be expanded. Therefore, this work aimed to study the growth and degradation potential of Stenotrophomonas maltophilia KB2 and Pseudomonas moorei KB4 strains toward phenol under suboptimal temperatures, pH, and salinity in connection with the activity of catechol dioxygenases, fatty acid profiling, and membrane permeability. The methodology used included: batch culture of bacteria in minimal medium supplemented with phenol (300 mg/L), isolating and measuring the activity of catechol 1,2- and 2,3-dioxygenases, calculating kinetic parameters, chromatographic analysis of fatty acid methyl esters (FAMEs) and determining the membrane permeability. It was established that the time of phenol utilisation by both strains under high temperatures (39 and 40 °C) proceeded 10 h; however, at the lowest temperature (10 °C), it was extended to 72 h. P. moorei KB4 was more sensitive to pH (6.5 and 8.5) than S. maltophilia KB2 and degraded phenol 5–6 h longer. Salinity also influenced the time of phenol removal. S. maltophilia KB2 degraded phenol in the presence of 2.5% NaCl within 28 h, while P. moorei KB4 during 72 h. The ability of bacteria to degrade phenol in suboptimal conditions was coupled with a relatively high activity of catechol 1,2- and/or 2,3-dioxygenases. FAME profiling and membrane permeability measurements indicated crucial alterations in bacterial membrane properties during phenol degradation leading predominantly to an increase in fatty acid saturation and membrane permeability. The obtained results offer hope for the potential use of both strains in environmental microbiology and biotechnology applications

    Physicochemical properties of soils at t<sub>0</sub>, t<sub>2</sub> and t<sub>14</sub> of the experiment (mean±SD; n = 3).

    No full text
    <p>Physicochemical properties of soils at t<sub>0</sub>, t<sub>2</sub> and t<sub>14</sub> of the experiment (mean±SD; n = 3).</p

    The plant biomass collected from the untreated and treated soils at t<sub>14</sub>.

    No full text
    <p>Means with the same letter(s) are not significant at p <0,05 within parameter between the untreated and treated soils.</p
    corecore