594 research outputs found

    The alloy with a memory, 55-Nitinol: Its physical metallurgy, properties, and applications

    Get PDF
    A series of nickel titanium alloys (55-Nitinol), which are unique in that they possess a shape memory, are described. Components made of these materials that are altered in their shapes by deformation under proper conditions return to predetermined shapes when they are heated to the proper temperature range. The shape memory, together with the force exerted and the ability of the material to do mechanical work as it returns to its predetermined shape, suggest a wide variety of industrial applications for the alloy. Also included are discussions of the physical metallurgy and the mechanical, physical, and chemical properties of 55-Nitinol; procedures for melting and processing the material into useful shapes; and a summary of applications

    The Addition Spectrum of a Lateral Dot from Coulomb and Spin Blockade Spectroscopy

    Full text link
    Transport measurements are presented on a class of electrostatically defined lateral dots within a high mobility two dimensional electron gas (2DEG). The new design allows Coulomb Blockade(CB) measurements to be performed on a single lateral dot containing 0, 1 to over 50 electrons. The CB measurements are enhanced by the spin polarized injection from and into 2DEG magnetic edge states. This combines the measurement of charge with the measurement of spin through spin blockade spectroscopy. The results of Coulomb and spin blockade spectroscopy for first 45 electrons enable us to construct the addition spectrum of a lateral device. We also demonstrate that a lateral dot containing a single electron is an effective local probe of a 2DEG edge.Comment: 4 pages, 4 figures submitted to Physical Review

    Exciton lifetime in InAs/GaAs quantum dot molecules

    Full text link
    The exciton lifetimes T1T_1 in arrays of InAs/GaAs vertically coupled quantum dot pairs have been measured by time-resolved photoluminescence. A considerable reduction of T1T_1 by up to a factor of \sim 2 has been observed as compared to a quantum dots reference, reflecting the inter-dot coherence. Increase of the molecular coupling strength leads to a systematic decrease of T1T_1 with decreasing barrier width, as for wide barriers a fraction of structures shows reduced coupling while for narrow barriers all molecules appear to be well coupled. The coherent excitons in the molecules gain the oscillator strength of the excitons in the two separate quantum dots halving the exciton lifetime. This superradiance effect contributes to the previously observed increase of the homogeneous exciton linewidth, but is weaker than the reduction of T2T_2. This shows that as compared to the quantum dots reference pure dephasing becomes increasingly important for the molecules

    The visibility study of S-T+_+ Landau-Zener-St\"uckelberg oscillations without applied initialization

    Full text link
    Probabilities deduced from quantum information studies are usually based on averaging many identical experiments separated by an initialization step. Such initialization steps become experimentally more challenging to implement as the complexity of quantum circuits increases. To better understand the consequences of imperfect initialization on the deduced probabilities, we study the effect of not initializing the system between measurements. For this we utilize Landau-Zener-St\"uckelberg oscillations in a double quantum dot circuit. Experimental results are successfully compared to theoretical simulations.Comment: 8 pages, 5 figure

    Theory of quantum frequency translation of light in optical fiber: application to interference of two photons of different color

    Full text link
    We study quantum frequency translation and two-color photon interference enabled by the Bragg scattering four-wave mixing process in optical fiber. Using realistic model parameters, we computationally and analytically determine the Green function and Schmidt modes for cases with various pump-pulse lengths. These cases can be categorized as either "non-discriminatory" or "discriminatory" in regards to their propensity to exhibit high-efficiency translation or high-visibility two-photon interference for many different shapes of input wave packets or for only a few input wave packets, respectively. Also, for a particular case, the Schmidt mode set was found to be nearly equal to a Hermite-Gaussian function set. The methods and results also apply with little modification to frequency conversion by sum-frequency conversion in optical crystals

    Enhanced charge detection of spin qubit readout via an intermediate state

    Full text link
    We employ an intermediate excited charge state of a lateral quantum dot device to increase the charge detection contrast during the qubit state readout procedure, allowing us to increase the visibility of coherent qubit oscillations. This approach amplifies the coherent oscillation magnitude but has no effect on the detector noise resulting in an increase in the signal to noise ratio. In this letter we apply this scheme to demonstrate a significant enhancement of the fringe contrast of coherent Landau-Zener-Stuckleberg oscillations between singlet S and triplet T+ two-spin states.Comment: 3 pages, 3 figure

    Classical percolation fingerprints in the high-temperature regime of the integer quantum Hall effect

    Full text link
    We have performed magnetotransport experiments in the high-temperature regime (up to 50 K) of the integer quantum Hall effect for two-dimensional electron gases in semiconducting heterostructures. While the magnetic field dependence of the classical Hall law presents no anomaly at high temperatures, we find a breakdown of the Drude-Lorentz law for the longitudinal conductance beyond a crossover magnetic field B_c ~ 1 T, which turns out to be correlated with the onset of the integer quantum Hall effect at low temperatures. We show that the high magnetic field regime at B > B_c can be understood in terms of classical percolative transport in a smooth disordered potential. From the temperature dependence of the peak longitudinal conductance, we extract scaling exponents which are in good agreement with the theoretically expected values. We also prove that inelastic scattering on phonons is responsible for dissipation in a wide temperature range going from 1 to 50 K at high magnetic fields.Comment: 14 pages + 8 Figure

    COA6 facilitates cytochrome c oxidase biogenesis as thiol-reductase for copper metallochaperones in mitochondria.

    No full text
    The mitochondrial cytochrome c oxidase, the terminal enzyme of the respiratory chain, contains heme and copper centers for electron transfer. The conserved COX2 subunit contains the CuA site, a binuclear copper center. The copper chaperones SCO1, SCO2, and COA6 are required for CuA center formation. Loss of function of these chaperones and the concomitant cytochrome c oxidase deficiency cause severe human disorders. Here we analyzed the molecular function of COA6 and the consequences of COA6 deficiency for mitochondria. Our analyses show that loss of COA6 causes combined complex I and complex IV deficiency and impacts membrane potential driven protein transport across the inner membrane. We demonstrate that COA6 acts as a thiol-reductase to reduce disulphide bridges of critical cysteine residues in SCO1 and SCO2. Cysteines within the CX3CXNH domain of SCO2 mediate its interaction with COA6 but are dispensable for SCO2-SCO1 interaction. Our analyses define COA6 as thiol-reductase, which is essential for CuA biogenesis

    Quantum Hall induced currents and the magnetoresistance of a quantum point contact

    Get PDF
    We report an investigation of quantum Hall induced currents by simultaneous measurements of their magnetic moment and their effect on the conductance of a quantum point contact (QPC). Features in the magnetic moment and QPC resistance are correlated at Landau-level filling factors nu=1, 2 and 4, which demonstrates the common origin of the effects. Temperature and non-linear sweep rate dependences are observed to be similar for the two effects. Furthermore, features in the noise of the induced currents, caused by breakdown of the quantum Hall effect, are observed to have clear correlations between the two measurements. In contrast, there is a distinct difference in the way that the induced currents decay with time when the sweeping field halts at integer filling factor. We attribute this difference to the fact that, while both effects are sensitive to the magnitude of the induced current, the QPC resistance is also sensitive to the proximity of the current to the QPC split-gate. Although it is clearly demonstrated that induced currents affect the electrostatics of a QPC, the reverse effect, the QPC influencing the induced current, was not observed
    corecore