4 research outputs found

    A novel approach to genome-wide association analysis identifies genetic associations with primary biliary cholangitis and primary sclerosing cholangitis in Polish patients

    Get PDF
    Abstract Background Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are forms of hepatic autoimmunity, and risk for both diseases has a strong genetic component. This study aimed to define the genetic architecture of PBC and PSC within the Polish population. Methods Subjects were 443 women with PBC, 120 patients with PSC, and 934 healthy controls recruited from Gastroenterology Departments in various Polish hospitals. Allelotyping employed a pooled-DNA sample-based genome-wide association study (GWAS) approach, using Illumina Human Omni2.5-Exome BeadChips and the following novel selection criteria for risk loci: blocks of at least 10 single nucleotide polymorphisms (SNPs) in strong linkage disequilibrium, where the distance between each adjacent SNP pair in the block was less than 30 kb, and each SNP was associated with disease at a significance level of P < 0.005. A selected index SNP from each block was validated using TaqMan SNP genotyping assays. Results Nineteen and twenty-one SNPs were verified as associated with PBC and PSC, respectively, by individual genotyping; 19 (10/9, PBC/PSC) SNPs reached a stringent (corrected) significance threshold and a further 21 (9/12, PBC/PSC) reached a nominal level of significance ( P < 0.05 with odds ratio (OR) > 1.2 or < 0.83), providing suggestive evidence of association. The SNPs mapped to seven (1p31.3, 3q13, 6p21, 7q32.1, 11q23.3, 17q12, 19q13.33) and one (6p21) chromosome region previously ..

    Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    No full text
    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains

    Data Descriptor: A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins

    No full text
    Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment
    corecore