22 research outputs found

    The role of the locus coeruleus in mediating the attentional blink: A neurocomputational theory.

    Get PDF
    The attentional blink refers to the transient impairment in perceiving the 2nd of 2 targets presented in close temporal proximity. In this article, the authors propose a neurobiological mechanism for this effect. The authors extend a recently developed computational model of the potentiating influence of the locus coeruleus-norepinephrine system on information processing and hypothesize that a refractoriness in the function of this system may account for the attentional blink. The model accurately simulates the time course of the attentional blink, including Lag 1 sparing. The theory also offers an account of the close relationship of the attentional blink to the electrophysiological P3 component. The authors report results from two behavioral experiments that support a critical prediction of their theory regarding the time course of Lag 1 sparing. Finally, the relationship between the authors' neurocomputational theory and existing cognitive theories of the attentional blink is discussed. Copyright 2005 by the American Psychological Association

    Finger Painting or Digital Imaging

    No full text

    Lung surfactant proteins A and D can inhibit specific IgE binding to the allergens of Aspergillus fumigatus and block allergen-induced histamine release from human basophils

    No full text
    Aspergillus fumigatus is an opportunistic fungal pathogen which, in the immunocompetent host, causes allergic disorders such as allergic rhinitis, allergic sinusitis, hypersensitivity pneumonitis, and allergic bronchopulmonary Aspergillosis (ABPA). In the present study, the interaction of 3-week culture filtrate (3wcf) allergens and various purified glycosylated and non-glycosylated allergens of A. fumigatus with lung surfactant proteins, SP-A and SP-D, was investigated. Purified SP-A and SP-D, isolated from human bronchoalveolar lavage fluid, bound to the 3wcf allergens and purified allergens, gp55 and gp45, in a carbohydrate-specific and calcium-dependent manner. Both SP-A and SP-D did not bind to deglycosylated allergens, suggesting that the ability of SP-A and SP-D to bind certain allergens is mediated through their carbohydrate recognition domains, interacting with the carbohydrate residues on the allergen. Both SP-A and SP-D could inhibit the ability of allergen-specific IgE from Aspergillosis patients to bind these allergens, suggesting that SP-A and SP-D may be involved in the modulation of allergic sensitization and/or development of allergic reactions. The view that SP-A and SP-D play a protective role against airborne allergens is further supported by the demonstration of their ability to inhibit A. fumigatus allergen-induced histamine release from allergic patients' basophils
    corecore