75 research outputs found

    Xylitol: a potential alterative pharmaceutical excipient in the production of pharmaceutical tablets

    Get PDF

    Superior performance of engineered mannitol as a carrier in dry powder inhalations containing salbutamol sulphate

    Full text link
    The use of freeze drying technique can constitute an important step used in the pharmaceutical industry towards preparing freeze dried carrier particles which could help to solve some problems connected to drug-carrier dry powder aerosol formulations

    Recent advances in the engineering of nanosized active pharmaceutical ingredients: Promises and challenges

    Get PDF
    The advances in the field of nanotechnology have revolutionized the field of delivery of poorly soluble active pharmaceutical ingredients (APIs). Nanosized formulations have been extensively investigated to achieve a rapid dissolution and therefore pharmacokinetic properties similar to those observed in solutions. The present review outlines the recent advances, promises and challenges of the engineering nanosized APIs. The principles, merits, demerits and applications of the current ‘bottom-up’ and ‘top-down’ technologies by which the state of the art nanosized APIs can be produced were described. Although the number of research reports on the nanoparticle engineering topic has been growing in the last decade, the challenge is to take numerous research outcomes and convert them into strategies for the development of marketable products

    A review of factors affecting electrostatic charging of pharmaceuticals and adhesive mixtures for inhalation

    Get PDF
    Pharmaceutical powders are typically insulators consisting of relatively small particles and thus they usually exhibit significant electrostatic charging behaviours. In the inhalation field, the measurement of electrostatic charge is an imperative stage during pharmaceutical formulation development. The electrostatic charge is affected by the interplay of many factors. This article reviews the factors affecting the electrostatic charging of pharmaceutical powders with a focus on dry powder inhalations. The influences of particle resistivity, size distribution, shape distribution, surface roughness, polymorphic form and hygroscopicity, as well as the effects of moisture uptake, environmental conditions, pharmaceutical processing (i.e., milling, sieving, spray drying and blending), and storage on the electrostatic charge behaviours of pharmaceuticals, with focus on inhalation powders, were reviewed. The influence of electrostatic charge on the performance of dry powder inhaler formulations in terms of drug content homogeneity, the passage of drug through the inhaler device, drug-carrier adhesion/detachment, and drug deposition on the respiratory airways were discussed. The understanding gained is crucial to improving the safety, quality, and efficiency of the pharmaceutical inhalation products

    Thermal energy storage using metal–organic framework materials

    Get PDF
    Metal–organic framework (MOF) materials are new adsorbent materials that have high surface area and pore volume and hence high adsorption uptake. The previous exceptional properties make this class of materials have a great potential in many applications like cooling, gas separation and energy storage. However, there is very limited information on the performance of metal–organic framework materials in energy storage applications and their performance compared to conventional adsorbents. This paper aims to present an experimental characterisation of CPO-27(Ni) MOF material for water adsorption and to investigate its viability for energy storage. CPO-27(Ni) (known as MOF-74(Ni)), which is a MOF material that has high water adsorption capabilities of 0.47 gH2O gads−1 and hydrothermally stable and can be supplied in large quantities. Firstly, the material water adsorption isotherms were predicated using Materials Studio software via the material structure information and then compared to the experimentally measured isotherms. The experimentally measured isotherms and kinetics were used to model a double bed adsorption system for energy storage application using Simulink–Matlab software coupled with Nist RefProp thermophysical routines. Finally, the performance of CPO-27(Ni) was then compared with silica gel. The CPO-27(Ni) was found to outperform silica gel at long half cycle time (more than 30 min) at low evaporating temperature making it suitable for energy storage applications. The energy stored in the condenser and the adsorption bed was found to be dependent mostly on the regeneration and the cooling temperatures. The potential of the energy recovered from the adsorption bed can be double the one recovered from the condenser. Also, the energy recovery during condensation and adsorption was found to be independent of the reactor conductance except at small conductance ratio. Finally, the adsorption unit cooling water flow strategy was found to affect the amount of the energy recovered as recirculating the cooling water through the adsorption bed and then condenser was found to decrease the recovered energy from the condenser by 4%

    [sup]1H NMR quantification of spray dried and spray freeze-dried saccharide carriers in dry powder inhaler formulations

    Get PDF
    Quantitative analysis using proton NMR (1H qNMR) has been employed in various areas such as pharmaceutical analysis (e.g., dissolution study), vaccines, natural products analysis, metabolites, and macrolide antibiotics in agriculture industry. However, it is not routinely used in the quantification of saccharides in dry powder inhaler (DPI) formulations. The aim of this study was to develop a 1H NMR method for the quantification of saccharides employed in DPI formulations. Dry powders as DPI carriers were prepared by spray drying (SD) and spray freeze drying (SFD) using three saccharides: namely D-mannitol, D-sorbitol and D-(+)-sucrose. The calibration curves constructed for all three saccharides demonstrated linearity with R2 value of 1. The 1H qNMR method produced accurate (relative error %: 0.184-3.697) and precise data with high repeatability (RSD %: 0.517-3.126) within the calibration curve concentration range. The 1H qNMR method also demonstrated significant sensitivity with low values of limit of detection (0.058 mM for D-mannitol, 0.045 mM for D-(+)-sucrose, and 0.056 mM for D-sorbitol) and limit of quantitation (0.175 mM for D-mannitol, 0.135 mM for D-(+)-sucrose, and 0.168 mM for D-sorbitol). Pulmonary deposition via impaction experiments of the three saccharides was quantified using the developed method. It was found that SFD D-mannitol (68.99%) and SFD D-(+)-sucrose (66.62%) exhibited better delivered dose (total saccharide deposition in throat and all impactor stages) than SD D-mannitol (49.03%) and SD D-(+)-sucrose (57.70%) (p< 0.05). The developed 1H qNMR methodology can be routinely used as an analytical method to assess pulmonary deposition in impaction experiments of saccharides employed as carriers in DPI formulations

    A methodological evaluation and predictive in silico investigation into the multi-functionality of arginine in directly compressed tablets

    Get PDF
    The acceleration of solid dosage form product development can be facilitated by the inclusion of excipients that exhibit poly-/multi-functionality with reduction of the time invested in multiple excipient optimisations. Because active pharmaceutical ingredients (APIs) and tablet excipients present diverse densification behaviours upon compaction, the involvement of these different powders during compaction makes the compaction process very complicated. The aim of this study was to assess the macrometric characteristics and distribution of surface charges of two powders: indomethacin (IND) and arginine (ARG); and evaluate their impact on the densification properties of the two powders. Response surface modelling (RSM) was employed to predict the effect of two independent variables; Compression pressure (F) and ARG percentage (R) in binary mixtures on the properties of resultant tablets. The study looked at three responses namely; porosity (P), tensile strength (S) and disintegration time (T). Micrometric studies showed that IND had a higher charge density (net charge to mass ratio) when compared to ARG; nonetheless, ARG demonstrated good compaction properties with high plasticity (Y=28.01MPa). Therefore, ARG as filler to IND tablets was associated with better mechanical properties of the tablets (tablet tensile strength (σ) increased from 0.2±0.05N/mm2 to 2.85±0.36N/mm2 upon adding ARG at molar ratio of 8:1 to IND). Moreover, tablets' disintegration time was shortened to reach few seconds in some of the formulations. RSM revealed tablet porosity to be affected by both compression pressure and ARG ratio for IND/ARG physical mixtures (PMs). Conversely, the tensile strength (σ) and disintegration time (T) for the PMs were influenced by the compression pressure, ARG ratio and their interactive term (FR); and a strong correlation was observed between the experimental results and the predicted data for tablet porosity. This work provides clear evidence of the multi-functionality of ARG as filler, binder and disintegrant for directly compressed tablets
    • …
    corecore