222 research outputs found

    Delineation of RAID1, the RACK1 interaction domain located within the unique N-terminal region of the cAMP-specific phosphodiesterase, PDE4D5

    Get PDF
    Background The cyclic AMP specific phosphodiesterase, PDE4D5 interacts with the β-propeller protein RACK1 to form a signaling scaffold complex in cells. Two-hybrid analysis of truncation and mutant constructs of the unique N-terminal region of the cAMP-specific phosphodiesterase, PDE4D5 were used to define a domain conferring interaction with the signaling scaffold protein, RACK1. Results Truncation and mutagenesis approaches showed that the RACK1-interacting domain on PDE4D5 comprised a cluster of residues provided by Asn-22/Pro-23/Trp-24/Asn-26 together with a series of hydrophobic amino acids, namely Leu-29, Val-30, Leu-33, Leu-37 and Leu-38 in a 'Leu-Xaa-Xaa-Xaa-Leu' repeat. This was done by 2-hybrid analyses and then confirmed in biochemical pull down analyses using GST-RACK1 and mutant PDE4D5 forms expressed in COS cells. Mutation of Arg-34, to alanine, in PDE4D5 attenuated its interaction with RACK1 both in 2-hybrid screens and in pull down analyses. A 38-mer peptide, whose sequence reflected residues 12 through 49 of PDE4D5, bound to RACK1 with similar affinity to native PDE4D5 itself (Ka circa 6 nM). Conclusions The RACK1 Interaction Domain on PDE4D5, that we here call RAID1, is proposed to form an amphipathic helical structure that we suggest may interact with the C-terminal β-propeller blades of RACK1 in a manner akin to the interaction of the helical G-γ signal transducing protein with the β-propeller protein, G-β

    Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities

    Get PDF
    Poly-ADP-ribosylation is a post-translational modification that regulates processes involved in genome stability. Breakdown of the poly(ADP-ribose) (PAR) polymer is catalysed by poly(ADP-ribose) glycohydrolase (PARG), whose endo-glycohydrolase activity generates PAR fragments. Here we present the crystal structure of PARG incorporating the PAR substrate. The two terminal ADP-ribose units of the polymeric substrate are bound in exo-mode. Biochemical and modelling studies reveal that PARG acts predominantly as an exo-glycohydrolase. This preference is linked to Phe902 (human numbering), which is responsible for low-affinity binding of the substrate in endo-mode. Our data reveal the mechanism of poly-ADP-ribosylation reversal, with ADP-ribose as the dominant product, and suggest that the release of apoptotic PAR fragments occurs at unusual PAR/PARG ratios

    PhosIDP: a web tool to visualize the location of phosphorylation sites in disordered regions

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-03-15, accepted 2021-04-19, registration 2021-04-20, online 2021-05-11, pub-electronic 2021-05-11, collection 2021-12Publication status: PublishedFunder: Agency for Science, Technology and Research; doi: http://dx.doi.org/10.13039/501100001348; Grant(s): IDs H17/01/a0/010, IDs H17/01/a0/010Funder: Engineering and Physical Sciences Research Council; doi: http://dx.doi.org/10.13039/501100000266; Grant(s): EP/N024796/1, EP/N024796/1Abstract: Charge is a key determinant of intrinsically disordered protein (IDP) and intrinsically disordered region (IDR) properties. IDPs and IDRs are enriched in sites of phosphorylation, which alters charge. Visualizing the degree to which phosphorylation modulates the charge profile of a sequence would assist in the functional interpretation of IDPs and IDRs. PhosIDP is a web tool that shows variation of charge and fold propensity upon phosphorylation. In combination with the displayed location of protein domains, the information provided by the web tool can lead to functional inferences for the consequences of phosphorylation. IDRs are components of many proteins that form biological condensates. It is shown that IDR charge, and its modulation by phosphorylation, is more tightly controlled for proteins that are essential for condensate formation than for those present in condensates but inessential

    Evidence for the adaptation of protein pH-dependence to subcellular pH

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The availability of genome sequences, and inferred protein coding genes, has led to several proteome-wide studies of isoelectric points. Generally, isoelectric points are distributed following variations on a biomodal theme that originates from the predominant acid and base amino acid sidechain pKas. The relative populations of the peaks in such distributions may correlate with environment, either for a whole organism or for subcellular compartments. There is also a tendency for isoelectric points averaged over a subcellular location to not coincide with the local pH, which could be related to solubility. We now calculate the correlation of other pH-dependent properties, calculated from 3D structure, with subcellular pH.</p> <p>Results</p> <p>For proteins with known structure and subcellular annotation, the predicted pH at which a protein is most stable, averaged over a location, gives a significantly better correlation with subcellular pH than does isoelectric point. This observation relates to the cumulative properties of proteins, since maximal stability for individual proteins follows the bimodal isoelectric point distribution. Histidine residue location underlies the correlation, a conclusion that is tested against a background of proteins randomised with respect to this feature, and for which the observed correlation drops substantially.</p> <p>Conclusion</p> <p>There exists a constraint on protein pH-dependence, in relation to the local pH, that is manifested in the pKa distribution of histidine sub-proteomes. This is discussed in terms of protein stability, pH homeostasis, and fluctuations in proton concentration.</p

    Volume-based solvation models out-perform area-based models in combined studies of wild-type and mutated protein-protein interfaces

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Empirical binding models have previously been investigated for the energetics of protein complexation (ΔG models) and for the influence of mutations on complexation (i.e. differences between wild-type and mutant complexes, ΔΔG models). We construct binding models to directly compare these processes, which have generally been studied separately.</p> <p>Results</p> <p>Although reasonable fit models were found for both ΔG and ΔΔG cases, they differ substantially. In a dataset curated for the absence of mainchain rearrangement upon binding, non-polar area burial is a major determinant of ΔG models. However this ΔG model does not fit well to the data for binding differences upon mutation. Burial of non-polar area is weighted down in fitting of ΔΔG models. These calculations were made with no repacking of sidechains upon complexation, and only minimal packing upon mutation. We investigated the consequences of more extensive packing changes with a modified mean-field packing scheme. Rather than emphasising solvent exposure with relatively extended sidechains, rotamers are selected that exhibit maximal packing with protein. This provides solvent accessible areas for proteins that are much closer to those of experimental structures than the more extended sidechain regime. The new packing scheme increases changes in non-polar burial for mutants compared to wild-type proteins, but does not substantially improve agreement between ΔG and ΔΔG binding models.</p> <p>Conclusion</p> <p>We conclude that solvent accessible area, based on modelled mutant structures, is a poor correlate for ΔΔG upon mutation. A simple volume-based, rather than solvent accessibility-based, model is constructed for ΔG and ΔΔG systems. This shows a more consistent behaviour. We discuss the efficacy of volume, as opposed to area, approaches to describe the energetic consequences of mutations at interfaces. This knowledge can be used to develop simple computational screens for binding in comparative modelled interfaces.</p

    Survival of elderly patients with stage 5 CKD: comparison of conservative management and renal replacement therapy

    Get PDF
    Background. Elderly patients with end-stage renal disease and severe extra-renal comorbidity have a poor prognosis on renal replacement therapy (RRT) and may opt to be managed conservatively (CM). Information on the survival of patients on this mode of therapy is limited

    Successful stabilisation of nephropathy in a patient with POEMS (polyneuropathy, organomegaly, endocrinopathy, M-band, skin changes) syndrome on treatment with mycophenolate and steroids: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Renal involvement in POEMS (polyneuropathy, organomegaly, endocrinopathy, M-band, skin changes) syndrome is considered to be an under-diagnosed phenomenon with no clear treatment path. The limited literature suggests steroids to be the drug of choice, although improvements are limited and usually reverse on withdrawal of the drug.</p> <p>Case presentation</p> <p>A 52-year-old Caucasian woman presenting with features consistent with POEMS syndrome developed progressive renal impairment with proteinuria. Renal biopsy revealed a membranoproliferative glomerulonephritis. She was treated with relatively low dose oral mycophenolate mofetil and prednisolone which stabilised her nephropathy and neuropathy.</p> <p>Conclusion</p> <p>We describe an alternative therapeutic option in patients with this serious but poorly understood condition.</p

    Atypical Haemolytic Uraemic Syndrome Associated with a Hybrid Complement Gene

    Get PDF
    BACKGROUND: Sequence analysis of the regulators of complement activation (RCA) cluster of genes at chromosome position 1q32 shows evidence of several large genomic duplications. These duplications have resulted in a high degree of sequence identity between the gene for factor H (CFH) and the genes for the five factor H-related proteins (CFHL1–5; aliases CFHR1–5). CFH mutations have been described in association with atypical haemolytic uraemic syndrome (aHUS). The majority of the mutations are missense changes that cluster in the C-terminal region and impair the ability of factor H to regulate surface-bound C3b. Some have arisen as a result of gene conversion between CFH and CFHL1. In this study we tested the hypothesis that nonallelic homologous recombination between low-copy repeats in the RCA cluster could result in the formation of a hybrid CFH/CFHL1 gene that predisposes to the development of aHUS. METHODS AND FINDINGS: In a family with many cases of aHUS that segregate with the RCA cluster we used cDNA analysis, gene sequencing, and Southern blotting to show that affected individuals carry a heterozygous CFH/CFHL1 hybrid gene in which exons 1–21 are derived from CFH and exons 22/23 from CFHL1. This hybrid encodes a protein product identical to a functionally significant CFH mutant (c.3572C>T, S1191L and c.3590T>C, V1197A) that has been previously described in association with aHUS. CONCLUSIONS: CFH mutation screening is recommended in all aHUS patients prior to renal transplantation because of the high risk of disease recurrence post-transplant in those known to have a CFH mutation. Because of our finding it will be necessary to implement additional screening strategies that will detect a hybrid CFH/CFHL1 gene
    corecore