7 research outputs found

    Simple hyper-heuristics control the neighbourhood size of randomised local search optimally for LeadingOnes

    Get PDF
    Selection hyper-heuristics (HHs) are randomised search methodologies which choose and execute heuristics during the optimisation process from a set of low-level heuristics. A machine learning mechanism is generally used to decide which low-level heuristic should be applied in each decision step. In this paper we analyse whether sophisticated learning mechanisms are always necessary for HHs to perform well. To this end we consider the most simple HHs from the literature and rigorously analyse their performance for the LeadingOnes benchmark function. Our analysis shows that the standard Simple Random, Permutation, Greedy and Random Gradient HHs show no signs of learning. While the former HHs do not attempt to learn from the past performance of low-level heuristics, the idea behind the Random Gradient HH is to continue to exploit the currently selected heuristic as long as it is successful. Hence, it is embedded with a reinforcement learning mechanism with the shortest possible memory. However, the probability that a promising heuristic is successful in the next step is relatively low when perturbing a reasonable solution to a combinatorial optimisation problem. We generalise the `simple' Random Gradient HH so success can be measured over a fixed period of time τ, instead of a single iteration. For LeadingOnes we prove that the Generalised Random Gradient (GRG) HH can learn to adapt the neighbourhood size of Randomised Local Search to optimality during the run. As a result, we prove it has the best possible performance achievable with the low-level heuristics (Randomised Local Search with different neighbourhood sizes), up to lower order terms. We also prove that the performance of the HH improves as the number of low-level local search heuristics to choose from increases. In particular, with access to k low-level local search heuristics, it outperforms the best-possible algorithm using any subset of the k heuristics. Finally, we show that the advantages of GRG over Randomised Local Search and Evolutionary Algorithms using standard bit mutation increase if the anytime performance is considered (i.e., the performance gap is larger if approximate solutions are sought rather than exact ones). Experimental analyses confirm these results for different problem sizes (up to n = 108) and shed some light on the best choices for the parameter τ in various situations

    How the duration of the learning period affects the performance of random gradient selection hyper-heuristics

    No full text
    Recent analyses have shown that a random gradient hyper-heuristic (HH) using randomised local search (RLSk) low-level heuristics with different neighbourhood sizes k can optimise the unimodal benchmark function LeadingOnes in the best expected time achievable with the available heuristics, if sufficiently long learning periods τ are employed. In this paper, we examine the impact of the learning period on the performance of the hyper-heuristic for standard unimodal benchmark functions with different characteristics: Ridge, where the HH has to learn that RLS1 is always the best low-level heuristic, and OneMax, where different low-level heuristics are preferable in different areas of the search space. We rigorously prove that super-linear learning periods τ are required for the HH to achieve optimal expected runtime for Ridge. Conversely, a sub-logarithmic learning period is the best static choice for OneMax, while using super-linear values for τ increases the expected runtime above the asymptotic unary unbiased black box complexity of the problem. We prove that a random gradient HH which automatically adapts the learning period throughout the run has optimal asymptotic expected runtime for both OneMax and Ridge. Additionally, we show experimentally that it outperforms any static learning period for realistic problem sizes

    When move acceptance selection hyper-heuristics outperform metropolis and elitist evolutionary algorithms and when not

    Get PDF
    Selection hyper-heuristics (HHs) are automated algorithm selection methodologies that choose between different heuristics during the optimisation process. Recently, selection HHs choosing between a collection of elitist randomised local search heuristics with different neighbourhood sizes have been shown to optimise standard unimodal benchmark functions from evolutionary computation in the optimal expected runtime achievable with the available low-level heuristics. In this paper, we extend our understanding of the performance of HHs to the domain of multimodal optimisation by considering a Move Acceptance HH (MAHH) from the literature that can switch between elitist and non-elitist heuristics during the run. In essence, MAHH is a non-elitist search heuristic that differs from other search heuristics in the source of non-elitism. We first identify the range of parameters that allow MAHH to hillclimb efficiently and prove that it can optimise the standard hillclimbing benchmark function OneMax in the best expected asymptotic time achievable by unbiased mutation-based randomised search heuristics. Afterwards, we use standard multimodal benchmark functions to highlight function characteristics where MAHH outperforms elitist evolutionary algorithms and the well-known Metropolis non-elitist algorithm by quickly escaping local optima, and ones where it does not. Since MAHH is essentially a non-elitist random local search heuristic, the paper is of independent interest to researchers in the fields of artificial intelligence and randomised search heuristics

    Airbags

    No full text
    corecore