6 research outputs found

    Exposure to exogenous egg cortisol does not rescue juvenile Chinook salmon body size, condition, or survival from the effects of elevated water temperatures

    Get PDF
    Climate change is leading to altered temperature regimes which are impacting aquatic life, particularly for ectothermic fish. The impacts of environmental stress can be translated across generations through maternally derived glucocorticoids, leading to altered offspring phenotypes. Although these maternal stress effects are often considered negative, recent studies suggest this maternal stress signal may prepare offspring for a similarly stressful environment (environmental match). We applied the environmental match hypothesis to examine whether a prenatal stress signal can dampen the effects of elevated water temperatures on body size, condition, and survival during early development in Chinook salmon Oncorhynchus tshawytscha from Lake Ontario, Canada. We exposed fertilized eggs to prenatal exogenous egg cortisol (1,000 ng/ml cortisol or 0 ng/ml control) and then reared these dosed groups at temperatures indicative of current (+0°C) and future (+3°C) temperature conditions. Offspring reared in elevated temperatures were smaller and had a lower survival at the hatchling developmental stage. Overall, we found that our exogenous cortisol dose did not dampen effects of elevated rearing temperatures (environmental match) on body size or early survival. Instead, our eyed stage survival indicates that our prenatal cortisol dose may be detrimental, as cortisol-dosed offspring raised in elevated temperatures had lower survival than cortisol-dosed and control reared in current temperatures. Our results suggest that a maternal stress signal may not be able to ameliorate the effects of thermal stress during early development. However, we highlight the importance of interpreting the fitness impacts of maternal stress within an environmentally relevant context

    Mimicking Transgenerational Signals of Future Stress: Thermal Tolerance of Juvenile Chinook Salmon Is More Sensitive to Elevated Rearing Temperature Than Exogenously Increased Egg Cortisol

    Get PDF
    Elevated temperatures resulting from climate change are expected to disproportionately affect ectotherms given their biological function has a direct link to environmental temperature. Thus, as climate change leads to rapid increases in water temperatures in rivers, aquatic ectotherms, such as fish may be highly impacted. Organisms can respond to these stressors through flexible and rapid phenotypic change induced via developmental and/or transgenerational plasticity. In oviparous species, gravid females may translate environmental stress across generations via increased exposure of eggs to maternally derived glucocorticoids (i.e., maternal stress), which has been shown to result in diverse phenotypic effects in offspring. Recent studies suggest these phenotypic changes from maternal glucocorticoids may elicit predictive adaptive responses, where offspring exposed to maternal stress may be better prepared for the stressful environment they will encounter (i.e., environmental match hypothesis). We applied the environmental match hypothesis to examine whether a prenatal exogenous increase in egg cortisol may prepare Chinook salmon offspring (Oncorhynchus tshawytscha) to cope with thermal challenges after being reared in chronically elevated temperatures. Specifically, we exposed eggs to aqueous bath of cortisol-dosed (1,000 ng/mL) or control (0 ng/ml) solutions, and then raised both treatments at current (+0°C—contemporary ambient river temperature) or elevated (+3°C—projected future river temperature) thermal regimes. We quantified thermal performance in fish 7–9 month post fertilization using two methods: via critical thermal maximum (CTMax), and energetic responses (in plasma cortisol, glucose, and lactate) to environmentally relevant, but challenging thermal spikes over 3 days. Overall, we found that exposure to elevated rearing temperatures had a large impact on thermal tolerance, where elevated-temperature reared offspring had significantly higher CTMax. In comparison, egg cortisol treatment had little to no clear effects on CTMax and blood energetic response. Our study demonstrates the importance of elevated water temperatures as an inducer of offspring phenotypes (via early developmental cues), and highlights the significance of examining offspring performance in environments with ecologically relevant stressors

    Exposure to exogenous egg cortisol does not rescue juvenile Chinook salmon body size, condition, or survival from the effects of elevated water temperatures

    No full text
    Climate change is leading to altered temperature regimes which are impacting aquatic life, particularly for ectothermic fish. The impacts of environmental stress can be translated across generations through maternally derived glucocorticoids, leading to altered offspring phenotypes. Although these maternal stress effects are often considered negative, recent studies suggest this maternal stress signal may prepare offspring for a similarly stressful environment (environmental match). We applied the environmental match hypothesis to examine whether a prenatal stress signal can dampen the effects of elevated water temperatures on body size, condition, and survival during early development in Chinook salmon Oncorhynchus tshawytscha from Lake Ontario, Canada. We exposed fertilized eggs to prenatal exogenous egg cortisol (1,000 ng/ml cortisol or 0 ng/ml control) and then reared these dosed groups at temperatures indicative of current (+0°C) and future (+3°C) temperature conditions. Offspring reared in elevated temperatures were smaller and had a lower survival at the hatchling developmental stage. Overall, we found that our exogenous cortisol dose did not dampen effects of elevated rearing temperatures (environmental match) on body size or early survival. Instead, our eyed stage survival indicates that our prenatal cortisol dose may be detrimental, as cortisol-dosed offspring raised in elevated temperatures had lower survival than cortisol-dosed and control reared in current temperatures. Our results suggest that a maternal stress signal may not be able to ameliorate the effects of thermal stress during early development. However, we highlight the importance of interpreting the fitness impacts of maternal stress within an environmentally relevant context

    Mimicking Transgenerational Signals of Future Stress: Thermal Tolerance of Juvenile Chinook Salmon Is More Sensitive to Elevated Rearing Temperature Than Exogenously Increased Egg Cortisol

    No full text
    Elevated temperatures resulting from climate change are expected to disproportionately affect ectotherms given their biological function has a direct link to environmental temperature. Thus, as climate change leads to rapid increases in water temperatures in rivers, aquatic ectotherms, such as fish may be highly impacted. Organisms can respond to these stressors through flexible and rapid phenotypic change induced via developmental and/or transgenerational plasticity. In oviparous species, gravid females may translate environmental stress across generations via increased exposure of eggs to maternally derived glucocorticoids (i.e., maternal stress), which has been shown to result in diverse phenotypic effects in offspring. Recent studies suggest these phenotypic changes from maternal glucocorticoids may elicit predictive adaptive responses, where offspring exposed to maternal stress may be better prepared for the stressful environment they will encounter (i.e., environmental match hypothesis). We applied the environmental match hypothesis to examine whether a prenatal exogenous increase in egg cortisol may prepare Chinook salmon offspring (Oncorhynchus tshawytscha) to cope with thermal challenges after being reared in chronically elevated temperatures. Specifically, we exposed eggs to aqueous bath of cortisol-dosed (1,000 ng/mL) or control (0 ng/ml) solutions, and then raised both treatments at current (+0°C—contemporary ambient river temperature) or elevated (+3°C—projected future river temperature) thermal regimes. We quantified thermal performance in fish 7–9 month post fertilization using two methods: via critical thermal maximum (CTMax), and energetic responses (in plasma cortisol, glucose, and lactate) to environmentally relevant, but challenging thermal spikes over 3 days. Overall, we found that exposure to elevated rearing temperatures had a large impact on thermal tolerance, where elevated-temperature reared offspring had significantly higher CTMax. In comparison, egg cortisol treatment had little to no clear effects on CTMax and blood energetic response. Our study demonstrates the importance of elevated water temperatures as an inducer of offspring phenotypes (via early developmental cues), and highlights the significance of examining offspring performance in environments with ecologically relevant stressors

    Effects of artificial light at night on fishes: A synthesis with future research priorities

    No full text
    Nearly all organisms rely on natural fluctuations of light as cues for synchronizing physiological processes and behavioural actions associated with foraging, growth, sleep and rest, reproduction, and migration. Consequently, although artificial lighting sources have provided a plethora of benefits for humans, they can lead to disruptions for wild organisms. With one quarter of the human population living within 100 km of coastlines, there is great potential for artificial light at night (ALAN) to influence the physiology, behaviour and fitness of fishes. Through a review of the literature (n = 584 publications focused on the effects of ALAN on individual organisms or ecosystems), we illustrate that most papers have concentrated on terrestrial species (59%) compared with aquatic species (20%) or a mixed approach (21%). Fishes have been underrepresented in comparison with many other taxa such as birds, insects and mammals, representing the focus of less than 8% of taxa-specific publications. While the number of publications per year focusing on fishes has generally been increasing since the mid-2000s, there has been a downturn in publication rate in the last few years. To understand where research related to ALAN in fishes has been focused, we partitioned studies into categories and found that publications have mostly concerned behaviour (41.0%), abundance and community structure (24.4%), and physiology (22.8%), while the longer-term effects on fitness (6.9%) are lacking. We synthesize the research completed in fishes and outline future priorities that will help ascertain the short- and long-term consequences of this relatively novel stressor for fish health and persistence

    Metabolic Costs of Exposure to Wastewater Effluent Lead to Compensatory Adjustments in Respiratory Physiology in Bluegill Sunfish

    No full text
    Municipal wastewater effluent is a major source of aquatic pollution and has potential to impact cellular energy metabolism. However, it is poorly understood whether wastewater exposure impacts whole-animal metabolism and whether this can be accommodated with adjustments in respiratory physiology. We caged bluegill sunfish (<i>Lepomis macrochirus</i>) for 21 days at two sites downstream (either 50 or 830 m) from a wastewater treatment plant (WWTP). Survival was reduced in fish caged at both downstream sites compared to an uncontaminated reference site. Standard rates of O<sub>2</sub> consumption increased in fish at contaminated sites, reflecting a metabolic cost of wastewater exposure. Several physiological adjustments accompanied this metabolic cost, including an expansion of the gill surface area available for gas exchange (reduced interlamellar cell mass), a decreased blood-O<sub>2</sub> affinity (which likely facilitates O<sub>2</sub> unloading at respiring tissues), increased respiratory capacities for oxidative phosphorylation in isolated liver mitochondria (supported by increased succinate dehydrogenase, but not citrate synthase, activity), and decreased mitochondrial emission of reactive oxygen species (ROS). We conclude that exposure to wastewater effluent invokes a metabolic cost that leads to compensatory respiratory improvements in O<sub>2</sub> uptake, delivery, and utilization
    corecore