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Mimicking Transgenerational Signals
of Future Stress: Thermal Tolerance
of Juvenile Chinook Salmon Is More
Sensitive to Elevated Rearing
Temperature Than Exogenously
Increased Egg Cortisol
Theresa R. Warriner1* , Christina A. D. Semeniuk1,2, Trevor E. Pitcher1,2, Daniel D. Heath1,2

and Oliver P. Love1,2

1 Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada, 2 Department of Integrative
Biology, University of Windsor, Windsor, ON, Canada

Elevated temperatures resulting from climate change are expected to disproportionately
affect ectotherms given their biological function has a direct link to environmental
temperature. Thus, as climate change leads to rapid increases in water temperatures
in rivers, aquatic ectotherms, such as fish may be highly impacted. Organisms can
respond to these stressors through flexible and rapid phenotypic change induced via
developmental and/or transgenerational plasticity. In oviparous species, gravid females
may translate environmental stress across generations via increased exposure of eggs to
maternally derived glucocorticoids (i.e., maternal stress), which has been shown to result
in diverse phenotypic effects in offspring. Recent studies suggest these phenotypic
changes from maternal glucocorticoids may elicit predictive adaptive responses,
where offspring exposed to maternal stress may be better prepared for the stressful
environment they will encounter (i.e., environmental match hypothesis). We applied the
environmental match hypothesis to examine whether a prenatal exogenous increase
in egg cortisol may prepare Chinook salmon offspring (Oncorhynchus tshawytscha) to
cope with thermal challenges after being reared in chronically elevated temperatures.
Specifically, we exposed eggs to aqueous bath of cortisol-dosed (1,000 ng/mL)
or control (0 ng/ml) solutions, and then raised both treatments at current (+0◦C—
contemporary ambient river temperature) or elevated (+3◦C—projected future river
temperature) thermal regimes. We quantified thermal performance in fish 7–9 month
post fertilization using two methods: via critical thermal maximum (CTMax), and energetic
responses (in plasma cortisol, glucose, and lactate) to environmentally relevant, but
challenging thermal spikes over 3 days. Overall, we found that exposure to elevated
rearing temperatures had a large impact on thermal tolerance, where elevated-
temperature reared offspring had significantly higher CTMax. In comparison, egg cortisol
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treatment had little to no clear effects on CTMax and blood energetic response. Our
study demonstrates the importance of elevated water temperatures as an inducer of
offspring phenotypes (via early developmental cues), and highlights the significance of
examining offspring performance in environments with ecologically relevant stressors.

Keywords: maternal stress, prenatal stress, thermal stress, climate change, CTMax, plasma cortisol, glucose,
lactate

INTRODUCTION

Climate change is a major contributor to rapid global changes,
whether via increasing average temperatures (Solomon et al.,
2012), or increasing frequency of extreme weather events (e.g.,
droughts: Rahmstorf and Coumou, 2011). Aquatic systems are
expected to be highly impacted by climate change, not only
through increasing average water temperatures, but by changing
the hydrological cycle (e.g., increase in precipitation variation),
which causes more extremes in water flow (e.g., droughts and
floods), and by increasing daily temperature extremes (e.g.,
thermal spikes: Mantua et al., 2010; Woodward et al., 2016).
Aquatic ectotherms such as reptiles, amphibians and most
fish species are potentially sensitive to these alterations in
temperature events, which may have lasting effects within and
across generations (Deutsch et al., 2008; McCullough et al.,
2009; Buckley and Huey, 2016). Indeed, juvenile ectotherms
that develop in warmer temperatures have been shown to have
altered phenotypes: smaller bodies (Cingi et al., 2010; Sheridan
and Bickford, 2011; Whitney et al., 2014), altered immunity
(Alcorn et al., 2002; Pérez-Casanova et al., 2008), and increased
metabolism (Clarke and Johnston, 1999; Enders and Boisclair,
2016). These responses have been shown to impact performance
(i.e., higher thermal tolerance: Bickford et al., 2010; Dillon et al.,
2010; Sandblom et al., 2016, but see Chen et al., 2013) and fitness
(i.e., survival: Martins et al., 2012; Rohr and Palmer, 2013).

To respond and persist within a rapidly changing world,
species require mechanisms such as developmental plasticity
(Hendry et al., 2008; Chevin et al., 2010), phenotypically flexible
responses (Piersma and Drent, 2003; Franklin et al., 2007;
Forsman, 2015), epigenetic inheritance (Lind and Spagopoulou,
2018), and contemporary evolution (Carroll et al., 2007)
which act within and across generations. Environmentally
induced plasticity can enable organisms to optimize growth,
morphology, and physiology in response to current (or expected)
environmental conditions to ultimately maximize performance,
reproduction, and survival (Seebacher et al., 2014; Fox et al.,
2019). Non-genetic maternal effects such as variation in egg
quality (Sinervo, 1990; Bernardo, 1996; Einum and Fleming,
1999), variation in parental behavior (Champagne et al., 2003;
Koch and Meunier, 2014), and traits such as maternal immune
components (e.g., antibodies, Roth et al., 2018), and maternally
derived hormones (Dantzer et al., 2013; Ruuskanen, 2015) have
long been recognized for their potential to shape offspring
phenotype and performance in response to current or expected
environmental quality (Mousseau and Fox, 1998; Green, 2008).
When a mother is exposed to a stressful environment during
gestation or follicular recruitment, she may mount a stress

response by elevating her glucocorticoid (GC) levels (Wingfield,
2013; Schreck and Tort, 2016). Recent research has examined
the transfer of environmentally elevated GCs from mother
to developing offspring (i.e., maternal stress) as a modulator
of offspring phenotype and performance (Love et al., 2005,
2009). These GC-induced responses have been interpreted by
some researchers as predictive adaptive responses in offspring
expected to face with stressful environments (Gluckman et al.,
2005; Marshall and Uller, 2007; Sheriff and Love, 2013). These
types of adaptive response mechanisms have already been
highlighted as potential drivers of flexible responses to warming
environments (Meylan et al., 2012), but the role of maternal
GCs as a signal of a stressor to offspring—such as warmer
waters—has not been fully established. Exposure to increased
maternal GCs has been shown to result in phenotypes expected
to have lowered energetic demand (i.e., slower growth: Hayward
and Wingfield, 2004, smaller body size: Love et al., 2005;
Burton et al., 2011, and lower baseline energetics: Capelle,
2017), allowing offspring to outcompete individuals with faster
growth or larger size in energetically demanding warmer waters
(Messmer et al., 2017). However, this expected increase in
performance of offspring exposed to increased maternal GCs
within a harsher environment requires further testing (Sopinka
et al., 2017). In species where there is spatial or temporal
overlap in the maternal and offspring environment (Sheriff
and Love, 2013), these stress-induced maternal effects may be
particularly relevant for signaling offspring for stressful future
environments (Capelle et al., 2017; Sopinka et al., 2017). The
environmental match hypothesis suggests that when there is a
match between the maternal and offspring environment (i.e.,
stressful maternal environment, and exposure to maternal stress
via elevation in maternal GCs, respectively) the result may
be higher than expected offspring performance and fitness.
Although we already appreciate that elevated temperatures can
lead to altered offspring phenotypes across generations (Burt
et al., 2011; Jonsson and Jonsson, 2016; Le Roy et al., 2017),
it is unclear whether phenotypes induced by maternal stress
signals (via GCs) enable offspring to optimally respond to chronic
elevated rearing temperature as well as rapid, extreme changes
in water temperature, especially in at-risk species (Love et al.,
unpublished; Sopinka et al., 2017).

Here we examine the effects of exposure to mimicked
prenatal GCs and altered rearing temperatures on the thermal
performance of juvenile Chinook salmon (Oncorhynchus
tshawytscha). Exploring whether Pacific salmon possess
transgenerational stress-induced responses that may mitigate
the effects of climate change is relevant from both a mechanistic
and a conservation point of view. Mechanistically, Pacific
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salmon are ectothermic and are highly susceptible to thermal
stressors (McCullough, 1999; Geist et al., 2006; Kuehne et al.,
2012; Bowerman et al., 2018). Pacific salmon have the capacity
to mount a GC stress response (i.e., elevated plasma GCs)
to additional environmental stressors during migration and
spawning (Cook et al., 2014). Since the maternal spawning
and offspring development environments overlap spatially,
maternal stress has the potential to act as a reliable signal of
the offspring’s future environment (Healey, 1991). From a
conservation standpoint, increasing river temperatures and
higher frequency of droughts are predicted to highly impact
cold-water species such as North American Pacific salmon
(McCullough et al., 2009; Cunningham et al., 2018); multiple
Pacific salmon species are in (or soon expected to be in) decline
due to climate change (Crozier et al., 2008; Ford et al., 2011);
and multiple populations of Chinook salmon in particular
are in rapid decline (COSEWIC, 2018). Therefore, our study
species and system offer an ideal combination in which to
investigate environmental inducers and transgenerational
signals of offspring stress. Predicting how the underlying
regulatory physiology, in addition to thermotolerance capacity,
will be impacted in Chinook salmon by future warming
scenarios is very challenging. Recent experimental work in
fish has suggested that while core physiological processes
such as cardiorespiratory functions may indeed be thermally
plastic, upper thermal tolerance limits may be much less
flexible (Sandblom et al., 2016). Although even more difficult
to predict, estimating the degree to which stress-induced
transgenerational effects will further influence both of
these important performance metrics remains imperative.
Additional mechanistic (i.e., transcriptional profiling and
physiological performance; e.g., Colson et al., 2019) studies
examining the impact of thermally induced developmental
plasticity in both these key systems, as well as measuring
whole-animal performance under differing thermal scenarios
(e.g., Farrell et al., 2008), will be required to answer these
complex questions.

To examine how the effects of climate change interact with
maternal GCs to generate plastic responses in Pacific salmon,
we applied the environmental matching paradigm (Sheriff and
Love, 2013). Specifically, we test the adaptive potential of
altered offspring phenotypes (due to maternal stress and rearing
temperature) to cope with environmentally relevant stressors
such as increased rearing temperatures under climate change
(Sheriff et al., 2017). Within this framework, we mimicked a
maternal stress signal by exogenously elevating egg cortisol (via
post-fertilization bathing method), and then raised resultant
cortisol-dosed (and control) offspring under a current (+0◦C)
or an elevated (+3◦C) temperature regime (Figure 1). At 7–
9 months post fertilization we assessed the thermal performance
of fish in two ways. First, we determined the CTMax of the
fish, defined as the temperature at which fish lose equilibrium
under steadily increasing water temperatures (Chen et al.,
2013; McDonnell and Chapman, 2015). This is a standardized
approach in the literature to approximate thermal tolerance
(Becker and Genoway, 1979; Lutterschmidt and Hutchison,
1997). Second, we quantified the energetic response of the fish

following 3 days of environmentally relevant, but challenging,
thermal spikes in water temperature. Given previous work
that found higher rearing water temperatures lead to higher
thermal tolerance (Sandblom et al., 2016), we predicted offspring
raised in elevated temperatures would have a higher thermal
performance (i.e., higher CTMax, lower energetic cost) in both
thermal performance metrics. Based on the environmental
matching hypothesis, we predicted that cortisol-dosed offspring
raised in elevated rearing temperatures would have a greater
thermal performance than control-dosed offspring reared in
the same elevated temperatures and facing the same acute
thermal challenge.

MATERIALS AND METHODS

Fish Origins and Husbandry
On October 4th, 2016, we caught 15 adult female and 9 adult
male spawning Chinook salmon from the Credit River, Ontario,
Canada (43◦34′40.0′′N 79◦42′06.3′′W), stripped their gametes,
and transferred the gametes to the University of Windsor on
ice in coolers. We fertilized eggs from each female separately
using pooled set of milt in 950 mL containers. We activated
the sperm by using 60 mL of river water (Lehnert et al., 2018).
Immediately following fertilization, we added river water mixed
to 1,000 ng/mL of cortisol (H4001, Sigma-Aldrich Canada Co.)
dissolved in 90% ethanol (HPLC grade, Sigma-Aldrich Canada
Co.) or 0 ng/mL (ethanol and water only) to each container
of eggs for our cortisol-dosed and control-dosed treatments
respectively (8 containers per female: 4 cortisol-dosed and
4 control). The cortisol dose concentration was designed to
increase egg cortisol levels within a biologically relevant range
(within 2 SD of controls) based on previous studies (Auperin and
Geslin, 2008; Sopinka et al., 2016; Capelle et al., 2017, reviewed
in Sopinka et al., 2017). After a 2-h cortisol treatment, eggs
were rinsed using dechlorinated water, and subset of 3 eggs per
container were collected for cortisol treatment verification (See
Warriner et al., 2020 for full methods and results). Eggs that were
cortisol-dosed had (mean ± SD) 75.2 ± 42.4 ng/g cortisol, and
control had 22.8 ± 25.4 ng/g. Each container of eggs was then
further split into two cells (4-in × 3-in) within a vertical egg-
incubation stack. To replicate our cortisol treatment, we placed
2 cortisol-dosed and 2 control treated containers from the same
female in the same egg incubation stack (16 incubation cells per
female). We then reared eggs under either current (+0◦C) or
elevated (+3◦C) temperature regimes (one incubation stack per
temperature treatment; see Figure 1). The current temperature
regime was chosen to mimic water temperatures recorded in the
Credit River through the Provincial Water Quality Monitoring
Network from 2010 to 2014 (PWQMN: Ontario Ministry of
Environment and Climate Change), while elevated rearing
temperatures were chosen to reflect the higher end of climate
change models for river temperatures (van Vliet et al., 2013;
also see Zhang et al., 2018; Liu et al., 2020). This resulted
in 4 treatment combinations in a 2 × 2 design: (1) current
temperature reared—control, (2) current temperature reared—
cortisol-dosed, (3) elevated temperature reared—control, and (4)
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FIGURE 1 | Mean daily water temperature for the two rearing temperature regimes (in aquatic facility) examined in Chinook salmon (Oncorhynchus tshawytscha).
Blue—current temperature regime (0◦C) and red—elevated temperature regime (+3◦C). Vertical lines represent sampling time points: solid—both current and
elevated groups; dashed, (B,C)—elevated, dotted, (B′,C′)—current. Time points are: (A)—Fertilization (Oct 4th), (B,B′)—CTMax start date (∼14◦C), and
(C,C′)—Thermal spike start date (∼18◦C). Modified from Figure 2 found in Warriner et al. (2020); Copyright (©) 2020 Warriner, Semeniuk, Pitcher, and Love.

elevated temperature reared—cortisol-dosed. Each female’s eggs
were split across all four groups to account for maternal effects.
All work described here was approved and completed under
University of Windsor Animal Use Project Protocols (AUPPs:
#14-25 and #15-15).

On Dec 23rd, 2016 and Feb 16th, 2017, for elevated-
and current-reared temperature offspring respectively, we
transferred fry at the exogenous-feeding stage (2–4 months
post-fertilization) to 320 L recirculation-system housing tanks
(five tanks per temperature treatment, with a separate system
for each temperature treatment). We separated offspring by
maternal identity and cortisol treatment using 10 L perforated
buckets placed within the holding tanks (six buckets per tank).
Buckets contained 100 offspring each (combined from replicate
cortisol treatment containers and replicate incubation cells).
During this period, water changes occurred at least daily to
maintain water quality. The fish were housed under red light
conditions following a 12:12 h light: dark cycle and were fed
3–4 times a day ad libitum. To ensure accurate temperature
records, water temperatures in each stack were measured hourly
(HOBO R© Water Temperature Pro v2 Data Logger; Onset).
During this period, the water temperature of the housing
tanks continued to follow the current and elevated temperature
seasonal regime (Figure 1). Due to mechanical error of an in-
line chiller used to control the current-temperature treatment,
housing temperatures were slowly raised with drop-in chillers
to match that of the elevated-temperature treatment on March
3rd, 2017, to minimize stress. Since this overlap in temperature
was for only 5 days until the chiller was repaired, and within
the magnitude of temperature fluctuations found in riverine
environments (Caissie, 2006), the effects of this period are

expected to be minimal. Experiments were performed when fish
were at similar accumulated thermal units (ATUs: Table 1),
which has been shown to correspond with fish development
(Neuheimer and Taggart, 2007).

CTMax
We evaluated the acute thermal tolerance of the fish across
egg cortisol and rearing temperature treatments by determining
their Critical Thermal Maximum (CTMax). CTMax is defined as
the temperature at which fish lose equilibrium (i.e., unable to
maintain an upright position) under steadily increasing water
temperature (Becker and Genoway, 1979; Lutterschmidt and
Hutchison, 1997). These trials occurred on May 1st–7th (elevated
temperature) and on June 21st–26th, 2017 (current temperature).
Two experimental tanks were run concurrently, and trials ran
between 08:00 and 19:00 H. Within each experimental tank,
four individuals were each placed in separate tapered perforated
circular buckets (top diameter 28 cm × bottom diameter 16.5
cm × deep 28 cm), with individuals per experimental tank
consisting of the same maternal identity, cortisol- and rearing
temperature treatment (ntotal = 234 fish). Two air stones were
used per experimental tank to ensure that dissolved oxygen levels
remained high throughout the trials. These experimental tanks
had the same water temperature as the housing tank at the
start of the trial (± 0.7◦C, starting temperature range = 13.2–
15.1◦C), which was controlled by an immersion circulating heater
(SC100 Immersion Circulators: Thermo Fisher Scientific). At the
end of the 1-h acclimation period, we increased temperature
(by ∼0.2◦C/min, x = 0.20, range = 0.13–0.35; similar to rates
in Becker and Genoway, 1979) until the fish lost equilibrium.
We measured water temperatures throughout the trial, and we
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TABLE 1 | Starting dates for the CTMax and thermal spike experiments in Chinook salmon (Oncorhynchus tshawytscha) with the respective accumulated
thermal units (ATUs).

CTMax Thermal spike

Starting date Accumulated thermal units (ATUs) Starting date Accumulated thermal units (ATUs)

Current 21–26 June 2017 2,284–2,359 12–15 July 2017 2,637–2,694

Elevated 1–7 May 2017 2,251–2,337 25–28 June 2017 2,611–2,665

measured dissolved oxygen (DO) pre- and post-trial in a sub-
sample of the trials (npre−trialDO = 40, xpre−trialDO = 8.70 mg/L,
npost−trialDO = 37, xpost−trialDO = 6.83 mg/L; LabQuest 2, stainless
steel temperature probe, optical DO probe: Vernier). Our
temperature probe measured temperature to 0.1◦C with ± 0.2–
0.5◦C accuracy at 0–100◦C, respectively. The trials were filmed
under red light using low-light sensitivity cameras for later video
analysis. After each trial, we euthanized the eight fishes using
clove oil and pithing, and measured their body mass (to 0.01 g).
During video analysis, the experimenter—blind to maternal
identity and cortisol treatment—recorded the time when the fish
lost equilibrium for a minimum of 10 consecutive seconds, and
the temperature at which this occurred.

Energetic Response to Thermal Spikes
As our second measure of thermal performance, we quantified
the energetic (physiological) coping response of fish in relation to
the egg cortisol and rearing temperature treatments following 3
days of thermal spikes (+9◦C—one spike per day). The maximum
temperature of our thermal spike was chosen from the results of
our CTMax experiment (slightly lower so that thermal spike was
challenging but not affecting locomotion). The rate of increase in
our environmentally relevant thermal spikes was chosen based on
literature examining the effects of diel cycling and temperature
spikes on fish energetics and metabolism (Tunnah et al., 2016;
Corey et al., 2017; Gallant et al., 2017). Many of these studies have
based their ramping protocols on in situ river temperature data.
After our experiments, we were able to confirm similar spikes
in temperature in the natal stream through water temperature
loggers deployed in the Credit River from October 2016 to
October 2017 (Figure 2). These trials occurred on May 25th–
June 2nd and on July 12th–20th 2017 for the elevated and
current treatments, respectively (nreplicate trials = 4; Figure 3). On
the evening prior to the first day of thermal spiking, 32 fish
were transferred from their housing tanks into two experimental
tanks. We conducted two different temperature cycle treatments:
first, the spiked group which experienced three environmentally
relevant thermal spikes over the 3 days, whereas the second,
the constant group, was maintained at a steady temperature
(∼18◦C, to act as a control for potential transfer stress). In the
spiked temperature treatment, thermal spikes were increased and
decreased at a rate 1◦C/h, resulting in a +9◦C temperature spike
in 18 h. Within each tank, 4 perforated buckets (top diameter 28
cm× bottom diameter 16.5 cm× deep 28 cm) each contained 3–
4 randomly selected fish from the same temperature and cortisol
treatment over the experimental period (ntotal = 117). On the
night of the final day, buckets were covered with opaque lids to

reduce disturbance during sampling planned for the following
morning. At 07:00 H of the 4th day, we removed the fish from
their containers using a net, and collected their blood (within
3 min of first disturbance for each bucket) by caudal puncture
using 10 µL heparinized microcapillary tubes. Each fish was
then weighed (0.01 g) and placed in RNA-LaterTM for a future
transcriptomics project (Finerty, 2020). We transferred the blood
into heparinized microcentrifuge tubes and placed these on ice,
and then measured blood glucose and lactate concentrations on-
site from whole blood using handheld meters within 8–13 min of
whole blood being collected (Freestyle Insulinx: Abbott Diabetes,
precision: SD ± 0.1–0.3 on range 2.4–19.2 mmol/L; Lactate
Plus: Nova Biochemical, precision SD ± 0.06–0.49 on range 1.6–
22.1 mmol/L; Barkley et al., 2016; Beecham et al., 2006; Wells and
Pankhurst, 1999). After 1 h on stored on ice, the microcentrifuge
tubes were centrifuged at 10,000 rpm for 12 mins, and the plasma
collected and stored at −80◦C for later cortisol analysis. We
assayed the plasma of juvenile fish for baseline cortisol levels
using non-extracted plasma and a previously validated enzyme-
linked immunosorbent assay (ELISA Cortisol Kit: Cayman
Chemical; Capelle, 2017). We ran samples in triplicate at a 1:50
dilution. Assay plates were read at 412 nm on a plate reader, and
intra- and inter-plate variation were 2.8 and 17.5%, respectively.

Statistical Analysis
We conducted all statistical analyses in R version 3.5.1 (R
Core Team, 2018). We assessed model assumptions by graphical
inspection: quantile-quantile plots of the residuals to verify
normality, and residuals vs. fitted values were plotted to
verify homogeneity. We transformed data when assumptions
were not met using a log transformation, or when needed, a
Box-Cox power transformation (Osborne, 2010) in the MASS
package (Venables and Ripley, 2003). We ran linear mixed
models (LMM) in the lme4 package (Bates et al., 2015; see
Supplementary Table 1).

After visually plotting CTMax scores, we detected one
individual score to be 3 median absolute deviations (MAD) from
the median (median = 28.8◦C, MAD = 0.48, datum = 26.6) and
thus it was identified as a statistical outlier and removed from the
dataset (Leys et al., 2013). This individual was at the smaller body
mass end of our range (mass = 0.65 g), and in field notes was
recorded as in poor body condition (i.e., frayed tail), which may
have contributed to its earlier loss of equilibrium. For CTMax,
we examined the interactive effects of rearing temperature and
prenatal cortisol using a model that included the fixed effects
of rearing temperature × cortisol treatment interaction, and
their main effects (rearing temperature + cortisol treatment) and
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FIGURE 2 | An example of a temperature spike from the Credit River
(43◦34′40.′′N 79◦42′06.3′′W) during June 11th–13th 2017 (HOBO: Water
temp pro v2). Credit River was the origin population for the Chinook offspring.
Highest temperature (27.0◦C) reached on June 12th, 2016 at 18:00 H.

offspring body mass. We included testing tank, testing bucket
(nested within tank), start temperature, and maternal identity as
random effects for this model.

We analyzed the energetic response of offspring to
temperature cycle (thermal spikes) using an LMM after
transformation (plasma cortisol: Box-Cox, current—λ = 0.242,
elevated—λ = 0.364: Osborne, 2010; glucose and lactate: log
transformation). Since we a priori were interested in comparing
energetic values within the same rearing temperature treatment,
we separated the analyses into separate models for each rearing
temperature. This decision also avoided the complexity of
examining notoriously difficult to interpret 3-way interactions
between egg cortisol treatment, water temperature treatment and
the spike treatment. Within current and elevated temperature
regimes, we tested models for response variables: cortisol,
glucose, and lactate that included fixed effects of temperature
cycle (constant or spiked), cortisol treatment, their interaction
(temperature cycle× cortisol treatment), and body mass. Models
also included random effects of replicate round and bucket ID.

We analyzed the interactions (CTMax: rearing temperature
× cortisol treatment; thermal spikes: cortisol treatment ×
temperature cycle) in all models by fitting them with maximum
likelihood (ML) estimations, and conducting a likelihood ratio
test (LRT). If the interaction was significant (p < 0.05),
the model was refitted with restricted maximum likelihood
estimation (REML), and we conducted post-hoc analyses using
false discovery rates (FDR, sharpened method) on pairwise
comparison of interest (Verhoeven et al., 2005; Pike, 2011).
Using this FDR post-hoc approach, we report q-values, which
are adjusted p-values (Pike, 2011). We calculated q-values, using
p-values from the emmeans package (Lenth, 2020) and using
the Excel file from Pike (2011). We calculated the difference in

marginal (variance of fixed effects only) and conditional (variance
of fixed and random) R2 values of significant interactions against
model without interaction (using MuMIn package; Nakagawa
and Schielzeth, 2013; Barton, 2019), as a method of estimating
the interaction effect size (this difference denoted by 1R). If
the interaction was instead determined to be non-significant
(p > 0.05), it was removed from the model, and main effects were
tested using LRT with ML estimations. After the final model was
established for CTMax, we tested the effects of maternal identity
in the model (included as a random factor) using LRT. Maternal
identity was not added to the statistical model of the energetic
response of offspring to the temperature cycle since maternal
identity could not be tracked due to experimental constraints.

RESULTS

CTMax
CTMax was influenced by rearing temperature, where fish that
were raised in elevated temperatures had significantly higher
CTMax than those raised in current temperatures (χ2 = 77.9,
p < 0.001). There was also a marginally significant (at the
10% level—p < 0.1) effect of rearing temperature by cortisol
treatment interaction on CTMax (LMM, LRT: χ2 = 2.92, p = 0.087;
Figure 4 and Table 2). Cortisol dose alone did not significantly
affect CTMax (χ2 = 0.13, p = 0.72). Body mass had a marginally
significant effect (at the 10% level) on CTMax (χ2 = 2.78,
p = 0.095), and thus was retained within the model. In the
final model, maternal identity was a significant random effect
for CTMax (χ2 = 14.0, p < 0.001, variance = 0.018; see
Supplementary Table 2).

Energetic Response to Thermal Spikes
Plasma Cortisol
Within the elevated temperature treatment, there was a
significant cortisol treatment by temperature cycle interaction
on plasma cortisol (LMM: χ2 = 4.47, p = 0.034; marginal,
conditional R2 with interaction: 11.8%, 40.2%; without
interaction: 0.82%, 39.7%, 1R: 11.0%, 0.5%; Figure 5A and
Table 2). Despite this overall global effect, FDR post-hoc analysis
was unable to differentiate significant differences between
all pairwise comparisons (q≥0.32), although the pattern of
results suggests cortisol-exposed offspring exhibit lower plasma
cortisol concentrations than control-dosed fish within the spiked
temperature, and the opposite under the constant-temperature
controls. Within the current water temperature treatment, the
interaction of cortisol and spike treatments was non-significant
(χ2 = 1.46, p = 0.23), nor was the main effect of temperature
cycles on plasma cortisol levels (χ2 = 0.14, p = 0.71). However,
cortisol treatment alone was marginally significant (at 10%
level: χ2 = 2.90, p = 0.089), where cortisol-dosed offspring had
lower plasma cortisol levels than control-dosed. Body mass
did not have a significant effect on plasma cortisol in both
rearing temperatures (elevated: χ2 = 0.01, p = 0.91; current:
χ2 = 0.91, p = 0.34).
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FIGURE 3 | Temperature recording from temperature loggers (HOBO: Water temp pro v2) that measured water temperature once every minute during water thermal
spike studies in Chinook salmon. Black lines represent the constant temperature groups (∼18◦C) and the gray line represents the spike groups (+9◦C per day).
(A,B)—represents replicate rounds for fish reared at elevated temperatures, and (C,D)—represents replicate rounds for fish reared at current temperatures.

Whole Blood Glucose
Within the elevated temperature treatment, there was a
marginally significant effect of cortisol and temperature cycle
interaction on glucose (LMM: χ2 = 3.66, p = 0.056; Figure 5B).
However, when we examined cortisol and temperature cycle
as main effects, they did not significantly affect blood glucose
(cortisol: χ2 = 2.47, p = 0.12, spike: χ2 = 0.025, p = 0.88).
Under the current temperature regime, glucose levels were
not significantly impacted by cortisol and temperature cycle
interaction (χ2 = 0.37, p = 0.54), nor cortisol treatment as a main
effect (χ2 = 0.15, p = 0.70). However, temperature cycle as a main
effect did significantly affect glucose (χ2 = 4.14, p = 0.042), where
offspring in the spiked treatment had significantly lower glucose
levels. Body mass did not have a significant effect on glucose in
both rearing temperatures (elevated: χ2 = 0.93, p = 0.34; current:
χ2 = 0.06, p = 0.81).

Whole Blood Lactate
Within the elevated temperature treatment, there was no cortisol
by temperature cycle interaction on lactate concentrations

(χ2 = 0.94, p = 0.63; Figure 5C), nor a main effect of cortisol
treatment (χ2 = 2.48, p = 0.12). Temperature cycle had a
marginally significant effect at the 10% level (χ2 = 2.90, p = 0.09),
where fish that underwent the thermal spike treatment had
marginally higher lactate levels. Overall lactate levels were also
higher in fish with a larger body mass regardless of treatment
(χ2 = 5.68, p = 0.017). Under the current rearing temperature,
cortisol by temperature cycle interaction did not significantly
affect lactate (χ2 = 0.21, p = 0.65). Lactate also did not
significantly differ across cortisol treatment (χ2 = 1.02, p = 0.31),
temperature cycle (χ2 = 0.86, p = 0.35), or with variation in body
mass (χ2 = 1.57, p = 0.21).

DISCUSSION

With climate change leading to increased water temperatures
and elevated daily temperature fluctuations (see Introduction),
we aimed to test whether maternal stress (i.e., exogenously
increased egg cortisol) mitigates the effects of chronically
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FIGURE 4 | Effects of rearing temperature and prenatal cortisol on average CTMax in juvenile Chinook salmon exposed to control (open circles) and cortisol-exposed
(closed circles) treatments and raised in current (blue), or elevated (red) temperature regimes (n.s. and *** represent p-values that were >0.05 and <0.001,
respectively).

TABLE 2 | Thermal tolerance performance and phenotype metrics (mean ± SE) of juvenile Chinook salmon.

Temperature cycle Current
cortisol-dosed

N Current
control

N Elevated
cortisol-dosed

N Elevated
control

N

CTMax CTMax (◦C) – 28.4 ± 0.09 59 28.3± 0.07 57 28.9 ± 0.03 59 28.9± 0.03 58

Mass (g) – 1.77 ± 0.14 59 1.74± 0.13 57 2.20 ± 0.15 59 2.14± 0.14 58

Temperature cycle Cortisol (ng/mL) Constant 24.4 ± 5.8 15 55.8 ± 9.8 14 58.1 ± 12.4 14 30.3 ± 6.0 15

Spike 43.3 ± 9.8 15 42.5 ± 5.9 15 21.8 ± 3.4 15 50.2 ± 8.2 14

Glucose (mmol/l) Constant 2.29 ± 0.08 15 2.39± 0.11 14 2.53 ± 0.15 14 2.16± 0.09 15

Spike 2.17 ± 0.09 15 2.16± 0.09 15 2.31 ± 0.05 15 2.32± 0.09 14

Lactate (mmol/l) Constant 2.03 ± 0.08 15 2.29± 0.18 14 2.10 ± 0.18 14 1.73± 0.12 15

Spike 2.30 ± 0.18 15 2.48± 0.27 15 2.23 ± 0.17 15 2.00± 0.21 14

Mass (g) Constant 4.45 ± 0.53 15 4.40± 0.40 14 5.94 ± 0.72 14 4.62± 0.60 15

Spike 4.00 ± 0.34 15 4.48± 0.32 15 4.64 ± 0.62 15 3.57± 0.55 14

elevated rearing temperatures to enhance offspring responses
to extreme temperature variation (i.e., spikes) in juvenile
salmon. Under the environmental match hypothesis (Love
et al., 2013; Sheriff and Love, 2013), when offspring were reared
under elevated water temperatures (stressful environment)
we predicted that exposure to elevated egg cortisol (resulting
from mimicking maternal stress) would improve thermal
performance (environmental match) compared to control-
dosed individuals (mismatch). Similar to established work
on acclimation temperature (McDonnell and Chapman,
2015), we demonstrated that elevated rearing temperatures
can indeed enhance offspring tolerance to rapid increases
in temperature (i.e., CTMax). Contrary to our predictions,
mimicking a signal of maternal stress (exogenous increase in
egg cortisol) did not noticeably modulate offspring thermal
sensitivity (both CTMax and energetic response) within either
rearing temperature regime, with the exception of marginally

lower plasma cortisol in cortisol-dosed offspring reared under
current temperatures.

CTMax
Although rearing temperature impacted offspring maximum
thermal tolerance, thermal tolerance was not further altered
by exposure to elevated egg cortisol: fish raised in elevated
temperatures had a higher mean CTMax than fish reared in
current temperatures. Previous work has shown that short-
term acclimation to higher temperatures results in a higher
CTMax (Zhang and Kieffer, 2014; McDonnell and Chapman,
2015). Long-term rearing (from early development) in elevated
temperatures also led to increased CTMax (He et al., 2014;
Muñoz et al., 2017; Del Rio et al., 2019; but see Chen et al.,
2013). Thus, acclimation to higher temperatures may allow
for organisms to persist within a warmer world under climate
change. However, acclimation to higher rearing temperature
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FIGURE 5 | Effects of cortisol treatment and temperature cycle on (A)—plasma cortisol, (B)—whole blood glucose, and (C)—whole blood lactate in juvenile Chinook
salmon. Open circles depict control and closed circles depict cortisol-dosed. For the temperature cycle groups, constant indicates fish remained at a constant
temperature, and spiked are fish who were exposed to 3 days of thermal spikes. n.s. and *represent a p-value of >0.05 and <0.05, respectively. n.s.1, n.s.2, and
n.s.3 represents a marginal significance of p = 0.089, p = 0.056, and p = 0.090 respectively.

does not increase CTMax in a 1:1 ratio (i.e., a ceiling threshold
exists; Sandblom et al., 2016), thus acclimation to higher
temperatures may have a limited capacity to increase thermal
tolerance. Unlike elevated rearing temperatures, exposure to
elevated egg cortisol did not further augment juvenile salmon
CTMax. To our knowledge, this is the first study to test the
effects of prenatal stress (i.e., exogenously elevated egg cortisol)
on CTMax. Previous studies have proposed that intergenerational
or transgenerational effects may be a mechanism by which
fish may increase their thermal tolerance under climate change
(Munday, 2014), although exposure to exogenously elevated
prenatal cortisol does not appear to be a significant maternal
effect contributor to thermal tolerance and performance. Overall,
we also found that CTMax was shaped by variation in juvenile
body mass, where larger individuals had a higher CTMax. Mass
has previously been shown to alter CTMax, with some studies
reporting that larger fish (higher mass, length, or body condition)
have higher CTMax, which is thought to be driven by higher
energetic reserves (Chen et al., 2013; Gallant et al., 2017). While
others have found the opposite, with smaller fish having higher

CTMax, potentially due to the have lower oxygen limited energetic
demand of smaller fish (Di Santo and Lobel, 2017; Messmer
et al., 2017). Although not the main aim of our study, we also
found maternal identity to be highly influential on offspring
CTMax. Maternal effects are thought to play a significant role in
determining how organisms respond to elevated temperatures
(Burt et al., 2011), and our study provides further evidence that
the role of maternal identity on offspring phenotype should be
further studied.

Energetic Coping to Thermal Spikes
Overall, our study suggests that exposure to elevated egg cortisol
may decrease plasma cortisol responses during thermal spikes
for fish raised in elevated temperatures; however, these pair-wise,
independent effects require further investigation as they were
not detectable in post-hoc analysis. By rearing these fish under
elevated temperatures, the offspring may be more prepared for
thermal spikes, which is why we may not have seen an impact of
thermal spikes on plasma cortisol. However, within the current
(i.e., benign) temperature treatment, cortisol-dosed offspring
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had marginally lower plasma cortisol regardless of whether
the offspring had undergone the thermal spike treatment.
According to the environmental match hypothesis, the cortisol-
exposed offspring should be mismatched to the current rearing
environment, and yet, they had significantly lower baseline
plasma cortisol (i.e., a lower energetic demand) than control
fish. Previous work has shown that cortisol-dosed salmonid
offspring had a lower plasma cortisol in a semi-natural postnatal
environment (compared to low water conditions: Capelle, 2017)
and in laboratory conditions compared to controls (Colson et al.,
2015). However, for each group in the thermal spikes experiment,
the average plasma cortisol was >25 ng/ml, with the exception
of cortisol-dosed fish in the constant group reared at current
temperatures (24.4 ng/mL). Compared to previous studies in
juvenile Chinook salmon (Capelle, 2017; Dender et al., 2018),
the combined average for cortisol-dosed offspring (33.9 ng/mL)
is within the biologically relevant range for this species. This
suggests that the lower plasma cortisol responses we report
for the cortisol-dosed fish may be an adaptive energy-saving
response compared to control offspring, which in turn may
have long-term phenotypic consequences such as higher growth
(Wendelaar-Bonga, 1997).

Among offspring reared under elevated temperature, there
was a marginally significant (p < 0.06) interaction between
cortisol dose and temperature cycle on blood glucose, suggesting
cortisol-dosed offspring had higher blood glucose than controls
when kept at constant temperatures. It is somewhat difficult
to determine the origin of this response since having a higher
glucose level may be indicative of both glucose mobilization
as part of a stress response, or higher food intake (since
fish were fed throughout the experiment; Polakof et al.,
2012). Previous studies have found that fish cease feeding
in warmer temperatures (Breau et al., 2011), and thus
continued feeding may indicate that cortisol-dosed fish are
retaining the ability to maintain homeostasis after exposure
to a chronic thermal stressor. Regardless, the temperature
cycle treatment itself did not impact blood glucose levels,
suggesting that living in chronically warmer waters may
allow fish to recover more quickly (i.e., via acclimation) to
thermal spikes and maintain higher blood glucose levels. In
support of this, Barton et al. (1987) found that rainbow trout
(Oncorhynchus mykiss) exposed to 10 weeks of daily handling
stress acclimated to additional handling and did not increase
their glucose levels as a result. Similarly, a study comparing
energetic responses to exposure between one and multiple
thermal spikes found that after multiple thermal spikes, fish
were able to maintain glucose levels by inducing anabolic
metabolism and replenishing glycogen reserves (Callaghan
et al., 2016). Since elevated-temperature reared fish were
chronically exposed to increased temperatures, they may be
using an anabolic phenotype to respond to thermal spikes,
potentially allowing for the maintenance of higher glucose levels.
Alternatively, when reared under current temperatures, fish
undergoing thermal spikes had lower glucose levels than fish
under stable temperatures, regardless of egg cortisol treatment.
This suggests that fish undergoing the thermal spikes may
have incurred an energetic cost, thus reducing their reserves

and glucose homeostatic concentrations when raised in a
benign environment.

Across both rearing temperatures, neither cortisol treatment
nor temperature cycle influenced offspring whole blood lactate,
although among fish reared in elevated temperatures, blood
lactate was higher in fish with a larger body size. Since we
ensured that oxygen levels remained high during the thermal
spikes (via air stones), anaerobic metabolism may not have
been necessary for the fish to persist at the higher, spiking
temperatures, which is why we did not detect differences across
temperature cycle treatments. Furthermore, since lactate is a
by-product of anaerobic metabolism in muscle tissues (Dando,
1969), larger fish having higher lactate levels may be due to a
higher proportion of muscle tissue available.

Potential for Maternal Stress to Adjust
Offspring Thermal Performance
Overall, we did not find that a biologically relevant exogenous
elevation of egg cortisol noticeably improved thermal tolerance
in fish already raised under elevated water temperatures.
Contrary to predictions of the environmental match hypothesis,
elevated egg cortisol did not affect CTMax, nor did this
treatment consistently interact with rearing temperature to
clearly modulate the suite of energetic response in fish to
thermal spikes. We did find that exposure to elevated egg
cortisol led to increased blood glucose in offspring reared
under elevated water temperatures, suggesting these offspring
have more energy readily available to cope with additional
thermal stressors within elevated temperatures. Maternal GCs
are thought to enact phenotypic changes in offspring via GC-
glucocorticoid receptor complex induced transcription and/or
epigenetic programming (Love et al., 2013; Sopinka et al.,
2017). Although prenatal stress has been shown to improve
energetic responses to stressful postnatal environments (e.g.,
low water conditions: Capelle, 2017), and has been shown
to alter a host of offspring traits (Sloman, 2010; Burton
et al., 2011; Sopinka et al., 2017), our study suggests that
maternally derived GCs may not noticeably improve thermal
tolerance under elevated water temperature conditions in
Chinook salmon. Thus, maternal GCs transferred to the
egg may not be able to adjust the thermal tolerances of
developing offspring via environmental matching, especially
in combination with a powerful modulator of offspring
development such as elevated rearing temperatures. However,
we examined the effect of only one cortisol dose, which
may have not affected offspring thermal tolerance because the
chosen cortisol dose may not have matched the intensity of
the chronically elevated rearing temperatures. To determine
if a prenatal cortisol signal could improve offspring thermal
tolerance under elevated temperatures, more research using
a variety of prenatal cortisol doses is needed. By designing
experiments using only mechanisms of transgenerational effects
(such as maternal GCs, epigenetics, and maternal provisioning),
researchers can differentiate between the paradigms of predictive
adaptive responses and the silver spoon hypothesis (Engqvist and
Reinhold, 2016). Other mechanisms of transgenerational effects
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(parental cues such as epigenetics and maternal provisioning)
should be studied as they may allow for a mechanism by which
environmental matching can improve offspring performance
in warming waters (Munday, 2014; Donelan et al., 2020). In
experiments when both parents and offspring are exposed
to elevated temperatures, there is evidence for environmental
matching which results in improved thermal tolerance in
offspring (Sandblom et al., 2016; Le Roy et al., 2017; Le Roy
and Seebacher, 2018). For example, Donelson et al. (2012)
found that fish reared under elevated water temperatures
were able to maintain their aerobic scope (an indicator
of ability to do aerobic activities) if their parents were
also raised in elevated temperatures. However, meta-analyses
of transgenerational effects have shown mixed evidence for
environmental matching inducing predictive adaptive responses
(Uller et al., 2013; Yin et al., 2019). Thus, further testing
the role of transgenerational stress within the environmental
context of climate change remains imperative to determine
the precise role of mechanisms such as maternally derived
hormones (Meylan et al., 2012), and epigenetics (Anastasiadi
et al., 2017; Ryu et al., 2018) in mediating adaptive responses
to global warming. Future work should include examining
which potential mechanisms of transgenerational effects may
allow for environmental matching to improve offspring thermal
tolerance by testing the effects of elevated temperatures on
these parental cues. From an evolutionary perspective, our
results show that offspring performance responses may be
modulated by environmentally and ecologically relevant stressors
(i.e., elevated rearing temperatures) experienced in early life.
From an applied point of view, this project demonstrates that
developmental plasticity (via early life environmental cues)
may enable adaptive organismal responses to the effects of
climate change.
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