63 research outputs found

    The assembly history of the nearest S0 galaxy NGC 3115 from its kinematics out to six half-light radii

    Get PDF
    Using new and archival data, we study the kinematic properties of the nearest field S0 galaxy, NGC 3115, out to 6.5\sim6.5 half-light radii (ReR_\mathrm{e}) from its stars (integrated starlight), globular clusters (GCs) and planetary nebulae (PNe). We find evidence of three kinematic regions with an inner transition at 0.2 Re\sim0.2\ R_\mathrm{e} from a dispersion-dominated bulge (Vrot/σ<1V_\mathrm{rot}/\sigma <1) to a fast-rotating disk (Vrot/σ>1V_\mathrm{rot}/\sigma >1), and then an additional transition from the disk to a slowly rotating spheroid at 22.5Re\sim2-2.5\, R_\mathrm{e}, as traced by the red GCs and PNe (and possibly by the blue GCs beyond 5Re\sim5\, R_\mathrm{e}). From comparison with simulations, we propose an assembly history in which the original progenitor spiral galaxy undergoes a gas-rich minor merger that results in the embedded kinematically cold disk that we see today in NGC 3115. At a later stage, dwarf galaxies, in mini mergers (mass-ratio << 1:10), were accreted building-up the outer slowly rotating spheroid, with the central disk kinematics largely unaltered. Additionally, we report new spectroscopic observations of a sample of ultra-compact dwarfs (UCDs) around NGC 3115 with the Keck/KCWI instrument. We find that five UCDs are inconsistent with the general rotation field of the GCs, suggesting an \textit{ex-situ} origin for these objects, i.e. perhaps the remnants of tidally stripped dwarfs. A further seven UCDs follow the GC rotation pattern, suggesting an \textit{in-situ} origin and, possibly a GC-like nature.Comment: 22 pages (including 3 pages of Appendix material), 14 figures, published in MNRA

    Habitat alteration in coastal and marine habitats following dam removal on the Elwha River

    Get PDF
    The ongoing removal of the Elwha and Glines Canyon dams on the Elwha River have mobilized a massive amount of sediment that has accumulated and altered habitats throughout the watershed. Accumulation has been particularly high in the estuaries and nearshore, significantly altering physical and biological conditions. We have been measuring a suite of parameters since 2010 to better understand how sediment accumulation and suspended sediment alter physical and biological conditions, and how those changes alter habitat conditions. In estuarine and nearshore habitats we are measuring salinity, temperature, turbidity, primary productivity, light availability, and nutrient concentration. In the estuary we are additionally measuring pH, dissolved oxygen concentration; in the nearshore we are additionally measuring current direction and speed, wave height and direction, and sediment deposition and residence time. Our data show that conditions in the estuary changed from a tidally influenced, brackish estuary to a freshwater estuary that is episodically isolated from the river within one year of dam removal. In addition to the fine sediment that has accumulated in the estuary, this hydrologic change has resulted in ecological changes to the estuary, including a shift in species composition of fish and invertebrates. In the nearshore, light availability has decreased during the dam removal process, and the incidence of seafloor sedimentation has increased, which is ephemeral owing to winnowing from periodic strong currents. Burial, scouring, and reduced light availability caused by increased sedimentation are likely negatively impacting algal communities in the nearshore that are within the Elwha River plume. This study advances our understanding of how the timing and magnitude of sediment delivery affects habitat availability, species persistence, and community composition change with implications to future land-use changes

    The assembly history of the nearest S0 galaxy NGC 3115 from its kinematics out to six half-light radii

    Get PDF
    Using new and archival data, we study the kinematic properties of the nearest field S0 galaxy, NGC 3115, out to ∼6.5 half-light radii (Re) from its stars (integrated starlight), globular clusters (GCs), and planetary nebulae (PNe). We find evidence of three kinematic regions with an inner transition at ∼0.2 Re from a dispersion-dominated bulge (Vrot/σ \u3c 1) to a fast-rotating disc (Vrot/σ \u3e 1), and then an additional transition from the disc to a slowly rotating spheroid at ∼ 2-2.5Re, as traced by the red GCs and PNe (and possibly by the blue GCs beyond ∼ 5Re). From comparison with simulations, we propose an assembly history in which the original progenitor spiral galaxy undergoes a gas-rich minor merger that results in the embedded kinematically cold disc that we see today in NGC 3115. At a later stage, dwarf galaxies, in mini mergers (mass ratio \u3c 1:10), were accreted building up the outer slowly rotating spheroid, with the central disc kinematics largely unaltered. Additionally, we report new spectroscopic observations of a sample of ultracompact dwarfs (UCDs) around NGC 3115 with the Keck/KCWI instrument.We find that five UCDs are inconsistent with the general rotation field of the GCs, suggesting an ex situ origin for these objects, i.e. perhaps the remnants of tidally stripped dwarfs. A further seven UCDs follow the GC rotation pattern, suggesting an in situ origin and, possibly a GC-like nature

    Changes in Kelp and Other Seaweeds Following Elwha Dam Removal

    Get PDF
    Kelps are ecologically important seaweeds that dominated the nearshore vegetation community prior to dam removal on the Elwha River. Dam removal is expected to trigger a shift from kelps to vegetation types that are characteristic of soft-sediment communities through restoring natural sediment supply. This study is investigating how nearshore vegetation responds to restoration of the natural sediment regime, both initially when large amounts of sediment entrained in the reservoirs are released and over longer time periods. We assessed vegetation at multiple spatial scales using three approaches. First, we measured floating kelp canopy area using aerial photography. Second, we assessed the abundance of understory kelp and seagrasses with towed videography along 50 km of shoreline. Third, scuba divers recorded density of kelp species and other seaweeds along 10 km of shoreline bracketing the river mouth. Results show profound changes in vegetation and a strong gradient in magnitude of impact related to distance from the river mouth. Floating kelp canopy area decreased 74% in the Elwha Drift Cell in the first year following project initiation (year 1), with lower magnitude losses throughout the Strait of Juan de Fuca. Area of prostrate kelps decreased by 45% (400 ha) and of stipitate kelps by 30% (130 ha) in the Elwha Drift Cell in year 1. Mean kelp density near the river mouth decreased 77% in year 1 and 95% in year 2. While all 10 kelp species declined, annuals were more impacted than perennials. In contrast to the general decline, juveniles of several kelp species appeared in late August of year 2, a substantial delay compared to typical spring timing of juvenile growth. What caused the large kelp losses and apparent delay of juvenile growth? Likely candidates include light reduction from the river plume and scour, burial or settlement inhibition from deposition. These candidates will be explored using physical data from the multidisciplinary research effort

    Formation of S0s via disc accretion around high-redshift compact ellipticals

    Get PDF
    We present hydrodynamical N-body models which demonstrate that elliptical galaxies can transform into S0s by acquiring a disc. In particular, we show that the merger with a massive gas-rich satellite can lead to the formation of a baryonic disc around an elliptical. We model the elliptical as a massive, compact galaxy which could be observed as a 'red nugget' in the high-z universe. This scenario contrasts with existing S0 formation scenarios in the literature in two important ways. First, the progenitor is an elliptical galaxy whereas scenarios in the literature typically assume a spiral progenitor. Secondly, the physical conditions underlying our proposed scenario can exist in low-density environments such as the field, in contrast to scenarios in the literature which typically address dense environments like clusters and groups. As a consequence, S0s in the field may be the most likely candidates to have evolved from elliptical progenitors. Our scenario also naturally explains recent observations which indicate that field S0s may have older bulges than discs, contrary to cluster S0s which seem to have older discs than bulges

    Oceanic loading of wildfire-derived organic compounds from a small mountainous river

    Get PDF
    Copyright 2008 by the American Geophysical Union.Small mountainous rivers (SMRs) export substantial amounts of sediment into the world's oceans. The concomitant yield of organic carbon (OC) associated with this class of rivers has also been shown to be significant and compositionally unique. We report here excessively high loadings of polycyclic aromatic hydrocarbons (PAHs), lignin, and levoglucosan, discharged from the Santa Clara River into the Santa Barbara Channel. The abundance of PAHs, levoglucosan, and lignin in Santa Barbara Channel sediments ranged from 201.7 to 1232.3 ng gdw−1, 1.3 to 6.9 μg gdw−1, and 0.3 to 2.2 mg per 100 mg of the sedimentary OC, respectively. Assuming a constant rate of sediment accumulation, the annual fluxes of PAHs, levoglucosan, and lignin, to the Santa Barbara Channel were respectively, 885.5 ± 170.2 ng cm−2 a−1, 3.5 ± 1.9 μg cm−2 a−1 and 1.4 ± 0.3 mg per 100 mg OC cm−2 a−1, over ∼30 years. The close agreement between PAHs, levoglucosan, and lignin abundance suggests that the depositional flux of these compounds is largely biomass combustion-derived. To that end, use of the Santa Clara River as a model for SMRs suggests this class of rivers may be one of the largest contributors of pyrolyzed carbon to coastal systems and the open ocean. Wildfire associated carbon discharged from other high yield fluvial systems, when considered collectively, may be a significant source of lignin, pyrolytic PAHs, and other pyrogenic compounds to the ocean. Extrapolating these methods over geologic time may offer useful historical information about carbon sequestration and burial in coastal sediments and affect coastal carbon budgets

    The SAMI Galaxy Survey: A Range in S0 Properties Indicating Multiple Formation Pathways

    Full text link
    It has been proposed that S0 galaxies are either fading spirals or the result of galaxy mergers. The relative contribution of each pathway, and the environments in which they occur remains unknown. Here we investigate stellar and gas kinematics of 219 S0s in the SAMI Survey to look for signs of multiple formation pathways occurring across the full range of environments. We identify a large range of rotational support in their stellar kinematics, which correspond to ranges in their physical structure. We find that pressure-supported S0s with v/σv/{\sigma} below 0.5 tend to be more compact and feature misaligned stellar and gas components, suggesting an external origin for their gas. We postulate that these S0s are consistent with being formed through a merger process. Meanwhile, comparisons of ellipticity, stellar mass and S\'ersic index distributions with spiral galaxies shows that the rotationally supported S0s with v/σv/{\sigma} above 0.5 are more consistent with a faded spiral origin. In addition, a simulated merger pathway involving a compact elliptical and gas-rich satellite results in an S0 that lies within the pressure-supported group. We conclude that two S0 formation pathways are active, with mergers dominating in isolated galaxies and small groups, and the faded spiral pathway being most prominent in large groups (1013<Mhalo<101410^{13} < M_{halo} < 10^{14}).Comment: 14 pages, 12 figures, accepted for publication in MNRA

    Nearshore subtidal community response during and after sediment disturbance associated with dam removal

    Get PDF
    Dam removal is used increasingly to restore aquatic ecosystems and remove unnecessary or high-risk infrastructure. As the number of removals increases, there is a growing understanding about the hydrologic, geomorphic, and ecological responses to these removals. Most dam removal studies, however, focus on river and watershed responses to dam removal. The removal of two dams on the Elwha River provided a unique opportunity to characterize the response of nearshore (coastal) ecosystems. We conducted SCUBA surveys between 2011 and 2022 to quantify trajectories of change in a nearshore ecosystem during and after dam removal. We focused on the degree to which the abundances of kelp, benthic invertebrates, and fish changed in response to patterns of sediment fluxes during and after dam removal. Our findings point to two pathways of response depending on the disturbance mechanism and species type. Sites with persistent sediment deposition were characterized by wholesale community changes that did not recover to a before dam removal condition. Instead, the sites were colonized by new species that were largely absent prior to dam removal. Sites that experienced high turbidity but lacked persistent seafloor deposition were primarily characterized by a reduction in the abundance of kelp and other algae during dam removal and a rapid recovery after sediment flux to the nearshore declined. Dam removal influences on invertebrates and fish at these sites were more variable, benefiting some species and disadvantaging others. In addition to dam removal, sea star wasting syndrome and a marine heatwave exerted distinct controls on subtidal communities during the same period. The loss of the predatory sea star Pycnopodia helianthoides was associated with gains in some of its prey species, and kelp community changes reflected regional trends in ocean temperature and kelp abundance. The results presented here have important implications for understanding the response of marine ecosystems to future dam removals and similar sediment perturbation events
    corecore