2,677 research outputs found

    Crosshole Radar Tomography in a Fluvial Aquifer Near Boise, Idaho

    Get PDF
    To determine the distribution of heterogeneities in the saturated zone of an unconfined aquifer in Boise, ID, we compute tomograms for three adjacent well pairs. The fluvial deposits consist of unconsolidated cobbles and sands. We used a curved-ray, finite-difference approximation to the eikonal equation to generate the forward model. The inversion uses a linearized, iterative scheme to determine the slowness distribution from the first arrival traveltimes. The tomograms consist of a layered zone representing the saturated aquifer. The velocities in this saturated zone range between 0.06 to 0.10 m/ns. We use a variety of methods to assess the reliability of our velocity models. Finally, we compare our results to neutron-derived porosity logs in the wells used for the tomograms. The comparison shows that the trends in porosity derived from the tomograms match the trends in porosity measured with the neutron probe

    Dice Questions Answered

    Get PDF
    Superstitious discussion of fair and unfair dice has pervaded the tabletop gaming industry since its inception. Many of these are not based on any quantitative data or studies. Consequently, misconceptions have been spread widely. One dice float test video on Youtube currently has 925,000 views (Fisher, 2015a). To combat the flood of misconceptions we investigated the following questions: 1) Are dice cursed? 2) Are D20s (20-sided dice) less fair than D6s (6-sided dice)? 3) Do float tests tell anything about the fairness of dice? 4) Are some dice systems inherently fairer than others? 5) Are density differences or dimensions more critical to dice fairness? 6) What is the best way to test your dice for fairness? 7) How many rolls are needed to detect unfair dice? 8) Are metal dice fairer than plastic dice? Based on tens of thousands of physical dice rolls, billions of simulated dice rolls, and analysis our answer to these questions are as follows. 1) Probably plastic dice are cursed. 2) Yes, D6s are fairer than D20s. 3) Float tests tell you nothing about which side of a die will come up more often. 4) Yes, some dice systems are fairer. 5) Usually dimensions are more important except for large, off-center bubbles. 6) The running chi square goodness of fit test is the best way to test dice that we found. 7) 100 rolls are not enough except possible for loaded dice. 8) Our preliminary conclusion based on limited tests is that metal dice are not fairer than plastic dice

    Crosshole Radar Tomography in an Alluvial Aquifer Nearboise, Idaho

    Get PDF
    To determine the distribution of heterogeneities in an unconfined aquifer in Boise, ID, we compute radar tomograms for three adjacent well pairs. The fluvial deposits consist of unconsolidated cobbles and sands. We used a curved‐ray, finite‐difference approximation to the eikonal equation to generate the forward model. The inversion uses a linearized, iterative scheme to determine the slowness distribution from the first arrival traveltimes. The tomograms consist of a sequence of layers representing the saturated aquifer. The velocities in this saturated zone range between 0.06 to 0.10 m/ns. We use a variety of methods to assess the reliability of our velocity models. Finally, we compare our results to neutron‐derived porosity logs in the wells used for the tomograms. The comparison shows that the trends in porosity derived from the tomograms match well with the trends in porosity measured with the neutron probe

    The Magellanic System: What have we learnt from FUSE?

    Full text link
    I review some of the findings on the Magellanic System produced by the Far Ultraviolet Spectroscopic Explorer (FUSE) during and after its eight years of service. The Magellanic System with its high-velocity complexes provides a nearby laboratory that can be used to characterize phenomena that involve interaction between galaxies, infall and outflow of gas and metals in galaxies. These processes are crucial for understanding the evolution of galaxies and the intergalactic medium. Among the FUSE successes I highlight are the coronal gas about the LMC and SMC, and beyond in the Stream, the outflows from these galaxies, the discovery of molecules in the diffuse gas of the Stream and the Bridge, an extremely sub-solar and sub-SMC metallicity of the Bridge, and a high-velocity complex between the Milky Way and the Clouds.Comment: A contributed paper to the FUSE Annapolis Conference "Future Directions in Ultraviolet Spectroscopy.", 5 pages. To appear as an AIP Conference Proceedin

    Tracking The Post-BBN Evolution Of Deuterium

    Get PDF
    The primordial abundance of deuterium produced during Big Bang Nucleosynthesis (BBN) depends sensitively on the universal ratio of baryons to photons, an important cosmological parameter probed independently by the Cosmic Microwave Background (CMB) radiation. Observations of deuterium in high-redshift, low-metallicity QSO Absorption Line Systems (QSOALS) provide a key baryometer, determining the baryon abundance at the time of BBN to a precision of 5%. Alternatively, if the CMB-determined baryon to photon ratio is used in the BBN calculation of the primordial abundances, the BBN-predicted deuterium abundance may be compared with the primordial value inferred from the QSOALS, testing the standard cosmological model. In the post-BBN universe, as gas is cycled through stars, deuterium is only destroyed so that its abundance measured anytime, anywhere in the Universe, bounds the primordial abundance from below. Constraints on models of post-BBN Galactic chemical evolution follow from a comparison of the relic deuterium abundance with the FUSE-inferred deuterium abundances in the chemically enriched, stellar processed material of the local ISM.Comment: 8 pages, 5 figures, to appear in the Proceedings of the Future Directions in Ultraviolet Spectroscopy Conferenc

    Intergalactic Baryons in the Local Universe

    Full text link
    Simulations predict that shocks from large-scale structure formation and galactic winds have reduced the fraction of baryons in the warm, photoionized phase (the Lya forest) from nearly 100% in the early universe to less than 50% today. Some of the remaining baryons are predicted to lie in the warm-hot ionized medium (WHIM) phase at T=10^5-10^7 K, but the quantity remains a highly tunable parameter of the models. Modern UV spectrographs have provided unprecedented access to both the Lya forest and potential WHIM tracers at z~0, and several independent groups have constructed large catalogs of far-UV IGM absorbers along ~30 AGN sight lines. There is general agreement between the surveys that the warm, photoionized phase makes up ~30% of the baryon budget at z~0. Another ~10% can be accounted for in collapsed structures (stars, galaxies, etc.). However, interpretation of the ~100 high-ion (OVI, etc) absorbers at z<0.5 is more controversial. These species are readily created in the shocks expected to exist in the IGM, but they can also be created by photoionization and thus not represent WHIM material. Given several pieces of observational evidence and theoretical expectations, I argue that most of the observed OVI absorbers represent shocked gas at T~300,000 K rather than photoionized gas at T<30,000 K, and they are consequently valid tracers of the WHIM phase. Under this assumption, enriched gas at T=10^5-10^6 K can account for ~10% of the baryon budget at z<0.5, but this value may increase when bias and incompleteness are taken into account and help close the gap on the 50% of the baryons still "missing".Comment: Invited review to appear in "Future Directions in Ultraviolet Spectroscopy", Oct 20-22, 2008, Annapolis, MD, M. E. Van Steenberg, ed. (April 2009). 8 pages, five figure

    The Cosmic Origins Spectrograph and the Future of Ultraviolet Astronomy

    Full text link
    I describe the capabilities of the Cosmic Origins Spectrograph, scheduled for May 2009 installation on the Hubble Space Telescope. With a factor-of-ten increase in far-UV throughput for moderate resolution spectroscopy, COS will enable a range of scientific programs that study hot stars, AGN, and gas in the interstellar medium, intergalactic medium, and galactic halos. We also plan a large-scale HST Spectroscopic Legacy Project for QSO absorption lines, galactic halos, and AGN outflows. Studies of next-generation telescopes for UV/O astronomy are now underway, including small, medium, and large missions to fill the imminent ten-year gap between the end of Hubble and a plausible launch of the next large mission. Selecting a strategy for achieving these goals will involve hard choices and tradeoffs in aperture, wavelength, and capability.Comment: To appear in Future Directions in Ultraviolet Astronomy (AIP Conf Proc

    Reflectivity Modeling of a Ground-Penetrating-Radar Profile of a Saturated Fluvial Formation

    Get PDF
    Major horizons in radar reflection profiles may correlate with contacts between stratigraphic units or with structural breaks such as fault surfaces. Minor reflections may be caused by clutter or, in some cases, may indicate material properties or structure within stratigraphic units. In this study, we examine the physical basis for major and minor reflections observed in a shallow, unconfined, fluvial aquifer near Boise, Idaho, U. S. A. We compare a 2D profile from a surface ground-penetrating-radar reflection transect with the 1D modeled reflection profiles at three wells adjacent to the surface-reflection profile. The 1D models are based on dielectric constant and electrical conductivity values from borehole logs and vertical radar profile data. Reflections at the water table/capillary fringe, at the base of a sand-filled channel, and at the base of two sand-rich lenses in a cobble-dominated unit are recognizable in the surfacereflection profile and in all 1D reflectivity models. Less prominent reflections in stratigraphic units occur in both the surface-profile model and the reflectivity model. Although such minor reflections are not correlated easily, general similarities in their presence and location indicate that sometimes the reflections may be useful for recognizing internal facies structure or character
    corecore