15 research outputs found

    Near surface properties of mixtures of propylammonium nitrate with n-alkanols 1. Nanostructure

    Get PDF
    In situ amplitude modulated-atomic force microscopy (AM-AFM) has been used to probe the nanostructure of mixtures of propylammonium nitrate (PAN) with n-alkanols near a mica surface. PAN is a protic ionic liquid (IL) which has a bicontinuous sponge-like nanostructure of polar and apolar domains in the bulk, which becomes flatter near a solid surface. Mixtures of PAN with 1-butanol, 1-octanol, and 1-dodecanol at 10–70 vol% n-alkanol have been examined, along with each pure n-alkanol, to reveal the effect of composition and n-alkanol chain length. At low concentrations the butanol simply swells the PAN near-surface nanostructure, but at higher concentrations the nanostructure fragments. Octanol and dodecanol first lower the preferred curvature of the PAN near-surface nanostructure because, unlike n-butanol, their alkyl chains are too long to be accommodated alongside the PAN cations. At higher concentrations, octanol and dodecanol self-assemble into n-alkanol rich aggregates in a PAN rich matrix. The concentration at which aggregation first becomes apparent decreases with n-alkanol chain length

    Adsorbed and near surface structure of ionic liquids at a solid interface

    Get PDF
    The structure of solid–ionic liquid (IL) interfaces has been characterised with unprecedented clarity by employing a range of atomic force microscopy (AFM) imaging techniques and tip pressures appropriate for the system under study. Soft contact and amplitude-modulation (AM) AFM imaging have been used to elucidate the lateral structure of ILs adsorbed onto mica, and in the near surface ion layers. Data is presented for ethylammonium nitrate (EAN) and 1-ethyl-3-methylimidazolium bis(trifluoro-methylsulfonyl)imide (EMIm TFSI). Whereas EAN is a protic IL that forms a nanostructured sponge phase in the bulk, EMIm TFSI is aprotic and has weak (or absent) bulk association structure. Comparison of results obtained for the two liquids elucidates how the strength of bulk liquid morphology effects lateral organisation at the surface, and any effect of IL class, i.e. protic versus aprotic. Imaging reveals EAN self assembles at the solid surface in a worm-like morphology, whereas EMIm cations adsorb in a more isolated fashion, but still in rows templated by the mica surface. To the authors’ knowledge, the wormlike structures present at the EAN–mica interface are the smallest self-assembled aggregates ever imaged on a solid surface

    3-Dimensional atomic scale structure of the ionic liquid–graphite interface elucidated by AM-AFM and quantum chemical simulations

    Get PDF
    In situ amplitude modulated atomic force microscopy (AM-AFM) and quantum chemical simulations are used to resolve the structure of the highly ordered pyrolytic graphite (HOPG)–bulk propylammonium nitrate (PAN) interface with resolution comparable with that achieved for frozen ionic liquid (IL) monolayers using STM. This is the first time that (a) molecular resolution images of bulk IL–solid interfaces have been achieved, (b) the lateral structure of the IL graphite interface has been imaged for any IL, (c) AM-AFM has elucidated molecular level structure immersed in a viscous liquid and (d) it has been demonstrated that the IL structure at solid surfaces is a consequence of both thermodynamic and kinetic effects. The lateral structure of the PAN–graphite interface is highly ordered and consists of remarkably well-defined domains of a rhomboidal superstructure composed of propylammonium cations preferentially aligned along two of the three directions in the underlying graphite lattice. The nanostructure is primarily determined by the cation. Van der Waals interactions between the propylammonium chains and the surface mean that the cation is enriched in the surface layer, and is much less mobile than the anion. The presence of a heterogeneous lateral structure at an ionic liquid–solid interface has wide ranging ramifications for ionic liquid applications, including lubrication, capacitive charge storage and electrodeposition

    Ion structure controls ionic liquid near-surface and interfacial nanostructure

    Get PDF
    A unique, but unifying, feature of ionic liquids (ILs) is that they are nanostructured on the length scale of the ions; in many ILs well-defined polar and apolar domains exist and may percolate through the liquid. Near a surface the isotropic symmetry of the bulk structure is broken, resulting in different nanostructures which, until now, have only been studied indirectly. In this paper, in situ amplitude modulated atomic force microscopy (AM-AFM) has been used to resolve the 3-dimensional nanostructure of five protic ILs at and near the surface of mica. The surface and near surface structures are distinct and remarkably well-defined, but are very different from previously accepted descriptions. Interfacial nanostructure is strongly influenced by the registry between cations and the mica surface charge sites, whereas near surface nanostructure is sensitive to both cation and anion structure. Together these ILs reveal how interfacial nanostructure can be tuned through ion structure, informing “bottom-up” design and optimisation of ILs for diverse technologies including heterogeneous catalysis, lubrication, electrochemical processes, and nanofluids

    Molecular Resolution in situ Imaging of Spontaneous Graphene Exfoliation

    Get PDF
    All reported methods of graphene exfoliation require external energy input, most commonly from sonication,1 shaking,2 or stirring.3 The reverse process—aggregation of single or few layer graphene sheets—occurs spontaneously in most solvents. This makes producing, and especially storing, graphene in economic quantities challenging,4,5 which is a significant barrier to widespread commercialization. This study reveals ionic liquids (ILs) can spontaneously exfoliate graphene from graphite at room temperature. The process is thermally activated and follows an Arrhenius-type behavior, resulting in thermodynamically stable IL/graphene suspensions. Using atomic force microscopy, the kinetics of the exfoliation could be followed in situ and with subnanometer resolution, showing that both the size and the charge of the constituent IL ions play a key role. Our results provide a general molecular mechanism underpinning spontaneous graphene exfoliation at room temperature in electrically conducting ILs, paving the way for their adoption in graphene-based technology

    Nanostructure of the Ionic Liquid-Graphite Stern Layer

    Get PDF
    Ionic liquids (ILs) are attractive solvents for devices such as lithium ion batteries and capacitors, but their uptake is limited, partially because their Stern layer nanostructure is poorly understood compared to molecular solvents. Here, in situ amplitude-modulated atomic force microscopy has been used to reveal the Stern layer nanostructure of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIm TFSI)–HOPG (highly ordered pyrolytic graphite) interface with molecular resolution. The effect of applied surface potential and added 0.1 wt/wt % Li TFSI or EMIm Cl on ion arrangements is probed between ±1 V. For pure EMIm TFSI at open-circuit potential, well-defined rows are present on the surface formed by an anion–cation–cation–anion (A–C–C–A) unit cell adsorbed with like ions adjacent. As the surface potential is changed, the relative concentrations of cations and anions in the Stern layer respond, and markedly different lateral ion arrangements ensue. The changes in Stern layer structure at positive and negative potentials are not symmetrical due to the different surface affinities and packing constraints of cations and anions. For potentials outside ±0.4 V, images are featureless because the compositional variation within the layer is too small for the AFM tip to detect. This suggests that the Stern layer is highly enriched in either cations or anions (depending on the potential) oriented upright to the surface plane. When Li+ or Cl– is present, some Stern layer ionic liquid cations or anions (respectively) are displaced, producing starkly different structures. The Stern layer structures elucidated here significantly enhance our understanding of the ionic liquid electrical double layer
    corecore