181 research outputs found

    Investigating the structure and composition of macromolecules using electrospray deposition coupled with scanning tunnelling microscopy

    Get PDF
    Macromolecules are complex, large and often thermally labile molecules with a wide range of properties and potential applications. More specifically, conjugated polymers are a subset of macromolecules with interesting electronic properties which have been utilised in organic electronic devices and show several advantages over the more commonly used inorganic alternatives. Despite the importance of these molecules to a range of fields there has been very few publications which investigate the chemical composition, and local packing of conjugated polymer assemblies with the ultimate spatial resolution of ultra-high vacuum scanning tunnelling microscopy. The reason for this is due to the incompatibility of current surface preparation techniques with conjugated polymers. In this thesis, we have used electrospray deposition in combination with scanning tunnelling microscopy in order to deposit intact conjugated polymers on atomically clean single crystal surfaces held under vacuum. Firstly, we have developed an instrument which is capable of depositing thermally labile or otherwise fragile molecules onto a sample held under high or ultra-high vacuum. Not only this, but the instrument is also capable of controlling the landing energy and mass composition of molecules within the beam. Further, by using a commercially available electrospray deposition system, we have investigated the monomer sequence, chain length and local packing of a number of conjugated polymer materials. We show that there are unexpected defects in both the monomer composition and chain length of these polymers. We also show that the local packing of a number of conjugated polymers with linear alkyl side chains can be directly visualised for the first time and directly compared to results obtained for 3D thin films of the same materials

    Velocity correlations in dense granular gases

    Full text link
    We report the statistical properties of spherical steel particles rolling on an inclined surface being driven by an oscillating wall. Strong dissipation occurs due to collisions between the particles and rolling and can be tuned by changing the number density. The velocities of the particles are observed to be correlated over large distances comparable to the system size. The distribution of velocities deviates strongly from a Gaussian. The degree of the deviation, as measured by the kurtosis of the distribution, is observed to be as much as four times the value corresponding to a Gaussian, signaling a significant breakdown of the assumption of negligible velocity correlations in a granular system.Comment: 4 pages, 4 Figure

    Collision statistics of driven granular materials

    Full text link
    We present an experimental investigation of the statistical properties of spherical granular particles on an inclined plane that are excited by an oscillating side-wall. The data is obtained by high-speed imaging and particle tracking techniques. We identify all particles in the system and link their positions to form trajectories over long times. Thus, we identify particle collisions to measure the effective coefficient of restitution and find a broad distribution of values for the same impact angles. We find that the energy inelasticity can take on values greater than one, which implies that the rotational degrees play an important role in energy transfer. We also measure the distance and the time between collision events in order to directly determine the distribution of path lengths and the free times. These distributions are shown to deviate from expected theoretical forms for elastic spheres, demonstrating the inherent clustering in this system. We describe the data with a two-parameter fitting function and use it to calculated the mean free path and collision time. We find that the ratio of these values is consistent with the average velocity. The velocity distribution are observed to be strongly non-Gaussian and do not demonstrate any apparent universal behavior. We report the scaling of the second moment, which corresponds to the granular temperature, and higher order moments as a function of distance from the driving wall. Additionally, we measure long time correlation functions in both space and in the velocities to probe diffusion in a dissipative gas.Comment: 12 pages, 4 figures, uses revtex

    Sequencing conjugated polymers by eye.

    Get PDF
    The solid-state microstructure of a conjugated polymer is the most important parameter determining its properties and performance in (opto)-electronic devices. A huge amount of research has been dedicated to tuning and understanding how the sequence of monomers, the nature and frequency of defects, the exact backbone conformation, and the assembly and crystallinity of conjugated polymers affect their basic photophysics and charge transporting properties. However, because of the lack of reliable high-resolution analytical techniques, all the structure-property relations proposed in the literature are based either on molecular modeling or on indirect experimental data averaged on polydisperse samples. We show that a combination of electrospray vacuum deposition and high-resolution scanning tunneling microscopy allows the imaging of individual conjugated polymers with unprecedented detail, thereby unraveling structural and self-assembly characteristics that have so far been impossible to determine

    Clustering transitions in vibro-fluidized magnetized granular materials

    Full text link
    We study the effects of long range interactions on the phases observed in cohesive granular materials. At high vibration amplitudes, a gas of magnetized particles is observed with velocity distributions similar to non-magnetized particles. Below a transition temperature compact clusters are observed to form and coexist with single particles. The cluster growth rate is consistent with a classical nucleation process. However, the temperature of the particles in the clusters is significantly lower than the surrounding gas, indicating a breakdown of equipartition. If the system is quenched to low temperatures, a meta-stable network of connected chains self-assemble due to the anisotropic nature of magnetic interactions between particles.Comment: 4 pages, 5 figure

    TCNQ physisorption on the Bi2Se3 topological insulator

    Get PDF
    Topological insulators are promising candidates for spintronic applications due to their topologically protected, spin-momentum locked and gapless surface states. The breaking of the time-reversal symmetry after the introduction of magnetic impurities, such as 3d transition metal atoms embedded in two-dimensional molecular networks, could lead to several phenomena interesting for device fabrication. The first step towards the fabrication of metal-organic coordination networks on the surface of a topological insulator is to investigate the adsorption of the pure molecular layer, which is the aim of this study. Here, the effect of the deposition of the electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) molecules on the surface of a prototypical topological insulator, bismuth selenide (Bi2Se3), is investigated. Scanning tunneling microscope images at low-temperature reveal the formation of a highly ordered two-dimensional molecular network. The essentially unperturbed electronic structure of the topological insulator observed by photoemission spectroscopy measurements demonstrates a negligible charge transfer between the molecular layer and the substrate. Density functional theory calculations confirm the picture of a weakly interacting adsorbed molecular layer. These results reveal significant potential of TCNQ for the realization of metal-organic coordination networks on the topological insulator surface

    Liquid-Solid Transition of Hard Spheres Under Gravity

    Full text link
    We investigate the liquid-solid transition of two dimensional hard spheres in the presence of gravity. We determine the transition temperature and the fraction of particles in the solid regime as a function of temperature via Even-Driven molecular dynamics simulations and compare them with the theoretical predictions. We then examine the configurational statistics of a vibrating bed from the view point of the liquid-solid transition by explicitly determining the transition temperature and the effective temperature, T, of the bed, and present a relation between T and the vibration strength.Comment: 14 total pages, 4 figure

    Determining the sequence and backbone structure of “semi-statistical” copolymers as donor–acceptor polymers in organic solar cells

    Get PDF
    Organic photovoltaics (OPVs) are attracting significant attention due to the growing demand for economically viable and renewable energy sources. With efficiencies exceeding 16.5%, single junction bulk heterojunction (BHJ) devices are amongst the most promising and are nearing commercialisation. One recent avenue of research has focused on statistical conjugated copolymers. However, a detailed investigation as to why these materials can achieve higher power conversion efficiencies than their regular alternating counterparts is seldom reported. This work describes an investigation into donor–acceptor polymers demonstrating how differing monomer activities can lead to differing microstructures in a simple batch reaction, which in turn demonstrates promising optoelectronic and morphological properties required for organic photovoltaic devices. A one pot condensation polymerisation reaction with three monomers leads to an ABA triblock structure from differing monomer reactivities. This structure in turn leads to visualised phase separation which is possibly linked to an increase in performance. Further to this we report on the reliability of the Stille coupling for the synthesis of conjugated polymers

    Thermodynamic Theory of Weakly Excited Granular Materials

    Full text link
    We present a thermodynamic theory of weakly excited two-dimensional granular systems from the view point of elementary excitations of spinless Fermion systems. We introduce a global temperature T that is associated with the acceleration amplitude \Gamma in a vibrating bed. We show that the configurational statistics of weakly excited granular materials in a vibrating bed obey the Fermi statistics.Comment: 12 pages, 1 figure, To Appear in Phys. Rev. Lett. April, 199
    corecore