137 research outputs found

    A tautoleptic approach to chiral hydrogen-bonded supramolecular tubular polymers with large cavity

    Get PDF
    A new strategy towards tubular hydrogen‐bonded polymers based on the self‐assembly of isocytosine tautomers in orthogonal directions is proposed and experimentally verified, including by 1H fast magic‐angle spinning (MAS) solid‐state NMR. The molecular tubes obtained possess large internal diameter and tailor‐made outer functionalities rendering them potential candidates for a number of applications

    Recognition and Accommodation at the Androgen Receptor Coactivator Binding Interface

    Get PDF
    Prostate cancer is a leading killer of men in the industrialized world. Underlying this disease is the aberrant action of the androgen receptor (AR). AR is distinguished from other nuclear receptors in that after hormone binding, it preferentially responds to a specialized set of coactivators bearing aromatic-rich motifs, while responding poorly to coactivators bearing the leucine-rich “NR box” motifs favored by other nuclear receptors. Under normal conditions, interactions with these AR-specific coactivators through aromatic-rich motifs underlie targeted gene transcription. However, during prostate cancer, abnormal association with such coactivators, as well as with coactivators containing canonical leucine-rich motifs, promotes disease progression. To understand the paradox of this unusual selectivity, we have derived a complete set of peptide motifs that interact with AR using phage display. Binding affinities were measured for a selected set of these peptides and their interactions with AR determined by X-ray crystallography. Structures of AR in complex with FxxLF, LxxLL, FxxLW, WxxLF, WxxVW, FxxFF, and FxxYF motifs reveal a changing surface of the AR coactivator binding interface that permits accommodation of both AR-specific aromatic-rich motifs and canonical leucine-rich motifs. Induced fit provides perfect mating of the motifs representing the known family of AR coactivators and suggests a framework for the design of AR coactivator antagonists

    SiMMap: a web server for inferring site-moiety map to recognize interaction preferences between protein pockets and compound moieties

    Get PDF
    The protein–ligand interacting mechanism is essential to biological processes and drug discovery. The SiMMap server statistically derives site-moiety map with several anchors, which describe the relationship between the moiety preferences and physico-chemical properties of the binding site, from the interaction profiles between query target protein and its docked (or co-crystallized) compounds. Each anchor includes three basic elements: a binding pocket with conserved interacting residues, the moiety composition of query compounds and pocket–moiety interaction type (electrostatic, hydrogen bonding or van der Waals). We provide initial validation of the site-moiety map on three targets, thymidine kinase, and estrogen receptors of antagonists and agonists. Experimental results show that an anchor is often a hot spot and the site-moiety map can help to assemble potential leads by optimal steric, hydrogen bonding and electronic moieties. When a compound highly agrees with anchors of site-moiety map, this compound often activates or inhibits the target protein. We believe that the site-moiety map is useful for drug discovery and understanding biological mechanisms. The SiMMap web server is available at http://simfam.life.nctu.edu.tw/

    TBP Binding-Induced Folding of the Glucocorticoid Receptor AF1 Domain Facilitates Its Interaction with Steroid Receptor Coactivator-1

    Get PDF
    The precise mechanism by which glucocorticoid receptor (GR) regulates the transcription of its target genes is largely unknown. This is, in part, due to the lack of structural and functional information about GR's N-terminal activation function domain, AF1. Like many steroid hormone receptors (SHRs), the GR AF1 exists in an intrinsically disordered (ID) conformation or an ensemble of conformers that collectively appears to be unstructured. The GR AF1 is known to recruit several coregulatory proteins, including those from the basal transcriptional machinery, e.g., TATA box binding protein (TBP) that forms the basis for the multiprotein transcription initiation complex. However, the precise mechanism of this process is unknown. We have earlier shown that conditional folding of the GR AF1 is the key for its interactions with critical coactivator proteins. We hypothesize that binding of TBP to AF1 results in the structural rearrangement of the ID AF1 domain such that its surfaces become easily accessible for interaction with other coactivators. To test this hypothesis, we determined whether TBP binding-induced structure formation in the GR AF1 facilitates its interaction with steroid receptor coactivator-1 (SRC-1), a critical coactivator that is important for GR-mediated transcriptional activity. Our data show that stoichiometric binding of TBP induces significantly higher helical content at the expense of random coil configuration in the GR AF1. Further, we found that this induced AF1 conformation facilitates its interaction with SRC-1, and subsequent AF1-mediated transcriptional activity. Our results may provide a potential mechanism through which GR and by large other SHRs may regulate the expression of the GR-target genes

    Antiviral activity of the mineralocorticoid receptor NR3C2 against Herpes simplex virus Type 1 (HSV-1) infection

    Get PDF
    Abstract Analysis of a genome-scale RNA interference screen of host factors affecting herpes simplex virus type 1 (HSV-1) revealed that the mineralocorticoid receptor (MR) inhibits HSV-1 replication. As a ligand-activated transcription factor the MR regulates sodium transport and blood pressure in the kidney in response to aldosterone, but roles have recently been elucidated for the MR in other cellular processes. Here, we show that the MR and other members of the mineralocorticoid signalling pathway including HSP90 and FKBP4, possess anti-viral activity against HSV-1 independent of their effect on sodium transport, as shown by sodium channel inhibitors. Expression of the MR is upregulated upon infection in an interferon (IFN) and viral transcriptional activator VP16-dependent fashion. Furthermore, the MR and VP16, together with the cellular co-activator Oct-1, transactivate the hormone response element (HRE) present in the MR promoter and those of its transcriptional targets. As the MR induces IFN expression, our data suggests the MR is involved in a positive feedback loop that controls HSV-1 infection

    Advances in estrogen receptor biology: prospects for improvements in targeted breast cancer therapy

    Get PDF
    Estrogen receptor (ER) has a crucial role in normal breast development and is expressed in the most common breast cancer subtypes. Importantly, its expression is very highly predictive for response to endocrine therapy. Current endocrine therapies for ER-positive breast cancers target ER function at multiple levels. These include targeting the level of estrogen, blocking estrogen action at the ER, and decreasing ER levels. However, the ultimate effectiveness of therapy is limited by either intrinsic or acquired resistance. Identifying the factors and pathways responsible for sensitivity and resistance remains a challenge in improving the treatment of breast cancer. With a better understanding of coordinated action of ER, its coregulatory factors, and the influence of other intracellular signaling cascades, improvements in breast cancer therapy are emerging

    An approach to helical tubular self-aggregation using C-2-symmetric self-complementary hydrogen-bonding cavity molecules

    No full text
    In an approach to helical self-aggregation, C 2 -symmetric cavity compounds based on the fusion of the bicyclo[3.3.1]nonane and indole framework and incorporating two 2-pyridone hydrogen-bonding motifs, compounds (-)-4 (pyrrole N-butyl) and (-)-5 (pyrrole N-decyl), have been synthesized. The 2-pyridone AD-DA hydrogen-bonding motif failed to operate in the solid state as demonstrated by X-ray diffraction analysis of (-)-4. Instead, the hydrogen-bonded (D-A) chains ⋯O=C-N-H⋯O=C-N-H⋯O=C-N- H⋯, interconnecting columnar stacks, comprise helices of the right-handed (P) chirality motif. In solution, the aggregation of (-)-5 was studied by NMR, electronic, and CD spectroscopies, and VPO measurements. These investigations strongly suggest that (-)-5 associates to oligomers in CHCl 3 and CH 2 Cl 2 using the 2-pyridone motif, fitting the equal K model, and that π-stacking can be ruled out as a mode of aggregation. We conclude that the so formed aggregates of (-)-5 have a helical structure, based on the fact that only helical tubular structures can result when enantiomerically pure 5 uses its 2-pyridone AD-DA hydrogen-bonding motifs for aggregation. \ua9 2006 American Chemical Society

    Design and synthesis of a C-2-symmetric self-complementary hydrogen-bonding cleft molecule based on the bicyclo 3.3.1 nonane and 4-oxo-5-azaindole framework. Formation of channels and inclusion complexes in the solid state

    No full text
    The synthesis of a C-2-symmetric cleft molecule 2 based on the fused framework between bicyclo-[3.3. 1] nonane and 4-oxo-5-azaindole, incorporating a self-complementary hydrogen-bonding motif, in both racemic and enantiomerically pure forms is reported. This cleft molecule is reminiscent of analogues of Troger's base though with different cleft dimensions and tilt angles. The framework of 2 provides a building block for the construction of self-assembled hydrogen-bonded supramolecular structures. The solid-state structure of 2 is highly influenced by the limited solubility of (+/-)-2 and (-)-2. The solvents interact with the potential hydrogen-bonding motifs of (+/-)-2 and (-)-2, forming different three-dimensional structures as revealed by X-ray diffraction analysis. In the solid state (+/-)-(2)(2)(.)5DMF forms hydrogen-bonded pleated band structures that build up three-dimensional pens between adjacent bands in which two molecules of DMF are trapped. In contrast, the aggregate obtained from (-)-2, (-)-2(.)2AcOH, showed infinite bands of complex constitution

    Network analysis of bicyclo 3.3.1 nonanes: the diol, the dione and the acetal

    No full text
    The solid state structure of endo,endo-bicyclo[3.3.1]nonane-2,6-diol, rac-2, shows a hydrogen bonded, three-connected, chiral 3D-net with utg-topology, distinctively different from those formed by the so called tubuland diols, e.g. 2,6-dimethylbicyclo[3.3.1]nonane-exo2, exo-6-diol, rac-5, that crystallise as three-connected, chiral etanets and from the qtz-net formed by weaker hydrogen bonds in the bicyclo[3.3.1]nonane-2,6-dione, 3. The protected bicyclo[3.3.1]nonane2,6-dione, bis-2,6-ethylenedioxy acetal, 4, has a structure governed by weaker forces and can be interpreted as close packed stacks
    corecore