21 research outputs found

    Recruitment of the Linear Ubiquitin Chain Assembly Complex Stabilizes the TNF-R1 Signaling Complex and Is Required for TNF-Mediated Gene Induction

    Get PDF
    TNF is a key inflammatory cytokine. Using a modified tandem affinity purification approach, we identified HOIL-1 and HOIP as functional components of the native TNF-R1 signaling complex (TNF-RSC). Together, they were shown to form a linear ubiquitin chain assembly complex (LUBAC) and to ubiquitylate NEMO. We show that LUBAC binds to ubiquitin chains of different linkage types and that its recruitment to the TNF-RSC is impaired in TRADD-, TRAF2-, and cIAP1/2- but not in RIP1- or NEMO-deficient MEFs. Furthermore, the E3 ligase activity of cIAPs, but not TRAF2, is required for HOIL-1 recruitment to the TNF-RSC. LUBAC enhances NEMO interaction with the TNF-RSC, stabilizes this protein complex, and is required for efficient TNF-induced activation of NF-κB and JNK, resulting in apoptosis inhibition. Finally, we demonstrate that sustained stability of the TNF-RSC requires LUBAC's enzymatic activity, thereby adding a third form of ubiquitin linkage to the triggering of TNF signaling by the TNF-RSC. © 2009 Elsevier Inc. All rights reserved

    Integrin α7 Is a Functional Marker and Potential Therapeutic Target in Glioblastoma

    Get PDF
    Functionally relevant markers of glioblastoma stem-like cells (GSCs) have potential for therapeutic targeting to treat this aggressive disease. Here we used generation and screening of thousands of monoclonal antibodies to search for receptors and signaling pathways preferentially enriched in GSCs. We identified integrin α7 (ITGA7) as a major laminin receptor in GSCs and in primary high-grade glioma specimens. Analyses of mRNA profiles in comprehensive datasets revealed that high ITGA7 expression negatively correlated with survival of patients with both low- and high-grade glioma. In vitro and in vivo analyses showed that ITGA7 plays a key functional role in growth and invasiveness of GSCs. We also found that targeting of ITGA7 by RNAi or blocking mAbs impaired laminin-induced signaling, and it led to a significant delay in tumor engraftment plus a strong reduction in tumor size and invasion. Our data, therefore, highlight ITGA7 as a glioblastoma biomarker and candidate therapeutic target

    Equines Metabolisches Syndrom – Was gibt es Neues?

    No full text

    Lower plasma trans-4-hydroxyproline and methionine sulfoxide levels are associated with insulin dysregulation in horses

    No full text
    Abstract Background Insulin dysregulation in horses is a metabolic condition defined by high insulin concentrations in the blood and peripheral insulin resistance. This hyperinsulinemia is often associated with severe damage in the hooves, resulting in laminitis. However, we currently lack detailed information regarding the potential involvement of particular metabolic pathways in pathophysiological causes and consequences of equine insulin dysregulation. This study aimed to assess the dynamic metabolic responses given to an oral glucose test (OGT) in insulin-sensitive and insulin-dysregulated horses by a targeted metabolomics approach to identify novel metabolites associated with insulin dysregulation. Results Oral glucose testing triggered alterations in serum insulin (26.28 ± 4.20 vs. 422.84 ± 88.86 μIU/mL, p < 0.001) and plasma glucose concentrations (5.00 ± 0.08 vs. 9.43 ± 0.44 mmol/L, p < 0.001) comparing basal and stimulated conditions after 180 min. Metabolome analyses indicated OGT-induced changes in short-chain acylcarnitines (6.00 ± 0.53 vs. 3.99 ± 0.23 μmol/L, p < 0.001), long-chain acylcarnitines (0.13 ± 0.004 vs. 0.11 ± 0.002 μmol/L, p < 0.001) and amino acids (2.18 ± 0.11 vs. 1.87 ± 0.08 μmol/L, p < 0.05). Kynurenine concentrations increased (2.88 ± 0.18 vs. 3.50 ± 0.19 μmol/L, p < 0.01), whereas spermidine concentrations decreased during OGT (0.09 ± 0.004 vs. 0.08 ± 0.002 μmol/L, p < 0.01), indicating proinflammatory conditions after oral glucose load. Insulin dysregulation was associated with lower concentrations of trans-4-hydroxyproline (4.41 ± 0.29 vs. 6.37 ± 0.71 μmol/L, p < 0.05) and methionine sulfoxide (0.40 ± 0.06 vs. 0.87 ± 0.13 μmol/L, p < 0.01; mean ± SEM in insulin-dysregulated vs. insulin-sensitive basal samples, respectively), two metabolites which are related to antioxidant defense mechanisms. Conclusion Oral glucose application during OGT resulted in profound metabolic and proinflammatory changes in horses. Furthermore, insulin dysregulation was predicted in basal samples (without OGT) by pathways associated with trans-4-hydroxyproline and methionine sulfoxide, suggesting that oxidative stress and oxidant–antioxidant disequilibrium are contributing factors to insulin dysregulation. The present findings provide new hypotheses for future research to better understand the underlying pathophysiology of insulin dysregulation in horses

    Retrospective analysis of insulin responses to standard dosed oral glucose tests (OGTs) via naso-gastric tubing towards definition of an objective cut-off value

    No full text
    Abstract Background Insulin dysregulation (ID) with basal or postprandial hyperinsulinemia is one of the key findings in horses and ponies suffering from the equine metabolic syndrome (EMS). Assessment of ID can easily be performed in clinical settings by the use of oral glucose challenge tests. Oral glucose test (OGT) performed with 1 g/kg bodyweight (BW) glucose administered via naso-gastric tube allows the exact administration of a defined glucose dosage in a short time. However, reliable cut-off values have not been available so far. Therefore, the aim of the study was to describe variations in insulin response to OGT via naso-gastric tubing and to provide a clinical useful cut-off value for ID when using the insulin quantification performed with an equine-optimized insulin enzyme-linked immunosorbent assay. Results Data visualization revealed no clear separation in the serum insulin concentration of insulin sensitive and insulin dysregulated horses during OGT. Therefore, a model based clustering method was used to circumvent the use of an arbitrary limit for categorization. This method considered all data-points for the classification, taking into account the individual insulin trajectory during the OGT. With this method two clusters were differentiated, one with low and one with high insulin responses during OGT. The cluster of individuals with low insulin response was consistently detected, independently of the initialization parameters of the algorithm. In this cluster the 97.5% quantile of insulin is 110 µLU/mL at 120 min. We suggest using this insulin concentration of 110 µLU/mL as a cut-off value for samples obtained at 120 min in OGT. Conclusion OGT performed with 1 g/kg BW glucose and administration via naso-gastric tubing can easily be performed under clinical settings. Application of the cut-off value of 110 µLU/mL at 120 min allows assessment of ID in horses

    Development of a Web App to Convert Blood Insulin Concentrations among Various Immunoassays Used in Horses

    No full text
    The measurement of the blood insulin concentration, and comparison to cut-offs, is essential in diagnosing insulin dysregulation, a common equine endocrinopathy. However, different insulin assays provide disparate results. We aimed to ease comparison between assays by compiling original and published data into a web app to convert insulin measurements from one assay to another. Data were available for ADVIA Centaur insulin chemiluminescent immunoassay (CLIA), Beckman Coulter insulin radioimmunoassay (RIA), Immulite 1000 CLIA, Immulite 2000 CLIA, Immulite 2000 XPi CLIA, Mercodia equine insulin enzyme-linked immunosorbent assay (ELISA), and Millipore porcine insulin RIA. Linear models were fitted for 13 assay pairs using non-decreasing splines, and integrated into this app. Assay comparisons including data from several studies showed a lower performance. This indicates technical variation between laboratories, which has not been described before, but is relevant when diagnostic measurements and cut-offs are provided by different laboratories. Nevertheless, the models’ overall high performance (median r2 = 0.94; range 0.57–1.00) supports their use to interpret results from diagnostic insulin measurements when the reference assay is unavailable, and to compare values obtained from different assays.</jats:p

    Additional file 1: of Lower plasma trans-4-hydroxyproline and methionine sulfoxide levels are associated with insulin dysregulation in horses

    No full text
    Online Resource 1. List of metabolites measured by the Absolute-IDQ p180 Kit. Name and abbreviation of metabolites measured in the targeted metabolomics analysis approach by using the Absolute-IDQ p180 Kit of Biocrates Life Sciences AG (Innsbruck, Austria). (DOCX 17 kb

    Metabolic profile distinguishes laminitis-susceptible and -resistant ponies before and after feeding a high sugar diet

    No full text
    Background: Insulin dysregulation (ID) is a key risk factor for equine endocrinopathic laminitis, but in many cases ID can only be assessed accurately using dynamic tests. The identification of other biomarkers could provide an alternative or adjunct diagnostic method, to allow early intervention before laminitis develops. The present study characterised the metabolome of ponies with varying degrees of ID using basal and postprandial plasma samples obtained during a previous study, which examined the predictive power of blood insulin levels for the development of laminitis, in ponies fed a high-sugar diet. Samples from 10 pre-laminitic (PL – subsequently developed laminitis) and 10 non-laminitic (NL – did not develop laminitis) ponies were used in a targeted metabolomic assay. Differential concentration and pathway analysis were performed using linear models and global tests. Results: Significant changes in the concentration of six glycerophospholipids (adj. P ≤ 0.024) and a global enrichment of the glucose-alanine cycle (adj. P = 0.048) were found to characterise the response of PL ponies to the high-sugar diet. In contrast, the metabolites showed no significant association with the presence or absence of pituitary pars intermedia dysfunction in all ponies. Conclusions: The present results suggest that ID and laminitis risk are associated with alterations in the glycerophospholipid and glucose metabolism, which may help understand and explain some molecular processes causing or resulting from these conditions. The prognostic value of the identified biomarkers for laminitis remains to be investigated in further metabolomic trials in horses and ponies.</p

    A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration

    No full text
    The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration
    corecore