12,476 research outputs found

    Supersoft elasticity in polydomain nematic elastomers

    Get PDF
    We consider the equilibrium stress-strain behavior of polydomain liquid crystal elastomers (PLCEs). We show that there is a fundamental difference between PLCEs cross-linked in the high temperature isotropic and low temperature aligned states. PLCEs cross-linked in the isotropic state then cooled to an aligned state will exhibit extremely soft elasticity (confirmed by recent experiments) and ordered director patterns characteristic of textured deformations. PLCEs cross-linked in the aligned state will be mechanically much harder and characterized by disclination textures

    Elasticity of Polydomain Liquid Crystal Elastomers

    Full text link
    We model polydomain liquid-crystal elastomers by extending the neo-classical soft and semi-soft free energies used successfully to describe monodomain samples. We show that there is a significant difference between polydomains cross-linked in homogeneous high symmetry states then cooled to low symmetry polydomain states and those cross-linked directly in the low symmetry polydomain state. For example, elastomers cross-linked in the isotropic state then cooled to a nematic polydomain will, in the ideal limit, be perfectly soft, and with the introduction of non-ideality, will deform at very low stress until they are macroscopically aligned. The director patterns observed in them will be disordered, characteristic of combinations of random deformations, and not disclination patterns. We expect these samples to exhibit elasticity significantly softer than monodomain samples. Polydomains cross-linked in the nematic polydomain state will be mechanically harder and contain characteristic schlieren director patterns. The models we use for polydomain elastomers are spatially heterogeneous, so rather than solving them exactly we elucidate this behavior by bounding the energies using Taylor-like (compatible test strain fields) and Sachs (constant stress) limits extended to non-linear elasticity. Good agreement is found with experiments that reveal the supersoft response of some polydomains. We also analyze smectic polydomain elastomers and propose that polydomain SmC* elastomers cross-linked in the SmA monodomain state are promising candidates for low field electrical actuation.Comment: 13 pages, 11 figure

    Molecular films associated with LDEF

    Get PDF
    The molecular films deposited on the surface of the Long Duration Exposure Facility (LDEF) originated from the paints and room-temperature-vulcanized (RTV) silicone materials intentionally used on the satellite and not from residual contaminants. The high silicone content of most of the films and the uniformity of the films indicates a homogenization process in the molecular deposition and suggests a chemically most favored composition for the final film. The deposition on interior surfaces and vents indicated multiple bounce trajectories or repeated deposition-reemission cycles. Exterior surface deposits indicated a significant return flux. Ultraviolet light exposure was required to fix the deposited film as is indicated by the distribution of the films on interior surfaces and the thickness of films at the vent locations. Thermal conditions at the time of exposure to ultraviolet light seems to be an important factor in the thickness of the deposit. Sunrise facing (ram direction) surfaces always had the thicker film. These were the coldest surfaces at the time of their exposure to ultraviolet light. The films have a layered structure suggesting cyclic deposition. As many as 34 distinct layers were seen in the films. The cyclic nature of the deposition and the chemical uniformity of the film one layer to the next suggest an early deposition of the films though there is evidence for the deposition of molecular films throughout the nearly six year exposure of the satellite. A final 'spray' of an organic material associated with water soluble salts occurred very late in the mission. This may have been the result of one of the shuttle dump activities

    Laser ablated high T(sub c) superconducting thin YBa2Cu3O(7-x) films on substrates suitable for microwave applications

    Get PDF
    The development of high temperature superconducting YBa2Cu3O(7-x) thin films on substrates suitable for microwave applications is of great interest for evaluating their applications for space radar, communication, and sensor systems. Thin films of YBa2Cu3O(7-x) were formed on SrTiO3, ZrO2, MgO, and LaAlO3 substrates by laser ablation. The wavelength used was 248 nm from a KrF excimer laser. During deposition the films were heated to 600 C in a flowing oxygen environment, and required no post annealing. The low substrate temperature during deposition with no post annealing gave films which were smooth, which had their c-axis aligned to the substrates, and which had grains ranging from 0.2 to 0.5 microns in size. The films being c-axis aligned gave excellent surface resistance at 35 GHz which was lower than that of copper at 77 K. At present, LaAlO3 substrates with a dielectric constant of 22, appears suitable as a substrate for microwave and electronic applications. The films were characterized by resistance-temperature measurements, scanning electron microscopy, and x ray diffraction. The highest critical transition temperatures (T sub c) are above 89 K for films on SrTiO3 and LaAlO3, above 88 K for ZrO2, and above 86 K for MgO. The critical current density (J sub c) of the films on SrTiO3 is above 2 x 10(exp 6) amperes/sq cm at 77 K. The T(sub c) and J(sub c) are reported as a function of laser power, composition of the substrate, and temperature of the substrate during deposition

    Sequentially evaporated thin Y-Ba-Co-O superconducting films on microwave substrates

    Get PDF
    The development of high T sub c superconducting thin films on various microwave substrates is of major interest in space electronic systems. Thin films of YBa2Cu3O(7-Delta) were formed on SrTiO3, MgO, ZrO2 coated Al2O3, and LaAlO3 substrates by multi-layer sequential evaporation and subsequent annealing in oxygen. The technique allows controlled deposition of Cu, BaF2 and Y layers, as well as the ZrO buffer layers, to achieve reproducibility for microwave circuit fabrication. The three layer structure of Cu/BaF2/Y is repeated a minimum of four times. The films were annealed in an ambient of oxygen bubbled through water at temperatures between 850 C and 900 C followed by slow cooling (-2 C/minute) to 450 C, a low temperature anneal, and slow cooling to room temperature. Annealing times ranged from 15 minutes to 5 hrs. at high temperature and 0 to 6 hr. at 450 C. Silver contacts for four probe electrical measurements were formed by evaporation followed with an anneal at 500 C. The films were characterized by resistance-temperature measurements, energy dispersive X-ray spectroscopy, X-ray diffraction, and scanning electron microscopy. Critical transition temperatures ranged from 30 K to 87 K as a function of the substrate, composition of the film, thicknesses of the layers, and annealing conditions. Microwave ring resonator circuits were also patterned on these MgO and LaAlO3 substrates

    Photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films

    Get PDF
    The response is reported of thin films of YBa2Cu3O(7-delta) with either a very grainy or a smooth epitaxial morphology to visible radiation. SrTiO3 substrates were employed for both types of films. The grainy films were formed by sequential multi-layer electron beam evaporation while the epitaxial films were formed by laser ablation. Both films were patterned into H shaped detectors via a negative photolithographic process employing a Br/ethanol etchant. The bridge region of the H was 50 microns wide. The patterned films formed by laser ablation and sequential evaporation had critical temperatures of 74 K and 72 K respectively. The bridge was current biased and illuminated with chopped He-Ne laser radiation and the voltage developed in response to the illumination was measured. A signal was detected only above the critical temperature and the peak of the response coincided with the resistive transition for both types of films although the correspondence was less exact for the grainy film. The details of the responses and their analysis are presented

    Regional variation in digital cushion pressure in the forefeet of horses and elephants

    Get PDF
    In this study, we seek to understand how the digital cushion morphologies evident in horse and elephant feet influence internal and external foot pressures. Our novel use of invasive blood pressure monitoring equipment, combined with a pressure pad and force plate, enabled measurements of (ex vivo) digital cushion pressure under increasing axial loads in seven horse and six elephant forefeet. Linear mixed effects models (LMER) revealed that internal digital cushion pressures increase under load and differ depending on region; elephant feet experienced higher magnitudes of medial digital cushion pressure, whereas horse feet experienced higher magnitudes of centralised digital cushion pressure. Direct comparison of digital cushion pressure magnitudes in both species, at equivalent loads relative to body weight, revealed that medial and lateral pressures increased more rapidly with load in elephant limbs. Within the same approximate region, internal pressures exceeded external, palmar pressures (on the sole of the foot), supporting previous Finite Element (FE) predictions. High pressures and large variations in pressure may relate to the development of foot pathology, which is a major concern in horses and elephants in a captive/domestic environment

    Quantification of contaminants associated with LDEF

    Get PDF
    The quantification of contaminants on the Long Duration Exposure Facility (LDEF) and associated hardware or tools is addressed. The purpose of this study was to provide a background data base for the evaluation of the surface of the LDEF and the effects of orbital exposure on that surface. This study necessarily discusses the change in the distribution of contaminants on the LDEF with time and environmental exposure. Much of this information may be of value for the improvement of contamination control procedures during ground based operations. The particulate data represents the results of NASA contractor monitoring as well as the results of samples collected and analyzed by the authors. The data from the tapelifts collected in the Space Shuttle Bay at Edwards Air Force Base and KSC are also presented. The amount of molecular film distributed over the surface of the LDEF is estimated based on measurements made at specific locations and extrapolated over the surface area of the LDEF. Some consideration of total amount of volatile-condensible materials available to form the resultant deposit is also presented. All assumptions underlying these estimates are presented along with the rationale for the conclusions. Each section is presented in a subsection for particles and another for molecular films
    corecore