481 research outputs found

    Breast cancer screening in women at increased risk according to different family histories: an update of the Modena Study Group experience

    Get PDF
    BACKGROUND: Breast cancer (BC) detection in women with a genetic susceptibility or strong family history is considered mandatory compared with BC screening in the general population. However, screening modalities depend on the level of risk. Here we present an update of our screening programs based on risk classification. METHODS: We defined different risk categories and surveillance strategies to identify early BC in 1325 healthy women recruited by the Modena Study Group for familial breast and ovarian cancer. Four BC risk categories included BRCA1/2 carriers, increased, intermediate, and slightly increased risk. Women who developed BC from January 1, 1994, through December 31, 2005 (N = 44) were compared with the number of expected cases matched for age and period. BRCA1/2 carriers were identified by mutational analysis. Other risk groups were defined by different levels of family history for breast or ovarian cancer (OC). The standardized incidence ratio (SIR) was used to evaluate the observed and expected ratio among groups. All statistical tests were two-sided. RESULTS: After a median follow-up of 55 months, there was a statistically significant difference between observed and expected incidence [SIR = 4.9; 95% confidence interval (CI) = 1.6 to 7.6; p < 0.001]. The incidence observed among BRCA carriers (SIR = 20.3; 95% CI = 3.1 to 83.9; P < 0.001), women at increased (SIR = 4.5; 95% CI = 1.5 to 8.3; P < 0.001) or intermediate risk (SIR = 7.0, 95% CI = 2.0 to 17.1; P = 0.0018) was higher than expected, while the difference between observed and expected among women at slightly increased risk was not statistically significant (SIR = 2.4, 95% CI = 0.9 to 8.3; P = .74). CONCLUSION: The rate of cancers detected in women at high risk according to BRCA status or strong family history, as defined according to our operational criteria, was significantly higher than expected in an age-matched general population. However, we failed to identify a greater incidence of BC in the slightly increased risk group. These results support the effectiveness of the proposed program to identify and monitor individuals at high risk, whereas prospective trials are needed for women belonging to families with sporadic BC or OC

    Assessment of false-negative cases of breast MR imaging in women with a familial or genetic predisposition

    Get PDF
    In order to assess the characteristics of malignant breast lesions those were not detected during screening by MR imaging. In the Dutch MRI screening study (MRISC), a non-randomized prospective multicenter study, women with high familial risk or a genetic predisposition for breast cancer were screened once a year by mammography and MRI and every 6 months with a clinical breast examination (CBE). The false-negative MR examinations were subject of this study and were retrospectively reviewed by two experienced radiologists. From November 1999 until March 2006, 2,157 women were eligible for study analyses. Ninety-seven malignant breast tumors were detected, including 19 DCIS (20%). In 22 patients with a malignant lesion, the MRI was assessed as BI-RADS 1 or 2. One patient was excluded because the examinations were not available for review. Forty-three percent (9/21) of the false-negative MR cases concerned pure ductal carcinoma in situ (DCIS) or DCIS with invasive foci, in eight of them no enhancement was seen at the review. In six patients the features of malignancy were missed or misinterpreted. Small lesion size (n = 3), extensive diffuse contrast enhancement of the breast parenchyma (n = 2), and a technically inadequate examination (n = 1) were other causes of the missed diagnosis. A major part of the false-negative MR diagnoses concerned non-enhancing DCIS, underlining the necessity of screening not only with MRI but also with mammography. Improvement of MRI scanning protocols may increase the detection rate of DCIS. The missed and misinterpreted cases are reflecting the learning curve of a multicenter study

    How I report breast magnetic resonance imaging studies for breast cancer staging and screening

    Get PDF
    Magnetic resonance imaging (MRI) of the breast is the most sensitive imaging technique for the diagnosis and local staging of primary breast cancer and yet, despite the fact that it has been in use for 20 years, there is little evidence that its widespread uncritical adoption has had a positive impact on patient-related outcomes. This has been attributed previously to the low specificity that might be expected with such a sensitive modality, but with modern techniques and protocols, the specificity and positive predictive value for malignancy can exceed that of breast ultrasound and mammography. A more likely explanation is that historically, clinicians have acted on MRI findings and altered surgical plans without prior histological confirmation. Furthermore, modern adjuvant therapy for breast cancer has improved so much that it has become a very tall order to show a an improvement in outcomes such as local recurrence rates. In order to obtain clinically useful information, it is necessary to understand the strengths and weaknesses of the technique and the physiological processes reflected in breast MRI. An appropriate indication for the scan, proper patient preparation and good scan technique, with rigorous quality assurance, are all essential prerequisites for a diagnostically relevant study. The use of recognised descriptors from a standardised lexicon is helpful, since assessment can then dictate subsequent recommendations for management, as in the American College of Radiology BI-RADS (Breast Imaging Reporting and Data System) lexicon (Morris et al., ACR BI-RADS® Atlas, Breast Imaging Reporting and Data System, 2013). It also enables audit of the service. However, perhaps the most critical factor in the generation of a meaningful report is for the reporting radiologist to have a thorough understanding of the clinical question and of the findings that will influence management. This has never been more important than at present, when we are in the throes of a remarkable paradigm shift in the treatment of both early stage and locally advanced breast cancer. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40644-016-0078-0) contains supplementary material, which is available to authorized users

    Cost-effectiveness of MRI compared to mammography for breast cancer screening in a high risk population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast magnetic resonance imaging (MRI) is a sensitive method of breast imaging virtually uninfluenced by breast density. Because of the improved sensitivity, breast MRI is increasingly being used for detection of breast cancer among high risk young women. However, the specificity of breast MRI is variable and costs are high. The purpose of this study was to determine if breast MRI is a cost-effective approach for the detection of breast cancer among young women at high risk.</p> <p>Methods</p> <p>A Markov model was created to compare annual breast cancer screening over 25 years with either breast MRI or mammography among young women at high risk. Data from published studies provided probabilities for the model including sensitivity and specificity of each screening strategy. Costs were based on Medicare reimbursement rates for hospital and physician services while medication costs were obtained from the Federal Supply Scale. Utilities from the literature were applied to each health outcome in the model including a disutility for the temporary health state following breast biopsy for a false positive test result. All costs and benefits were discounted at 5% per year. The analysis was performed from the payer perspective with results reported in 2006 U.S. dollars. Univariate and probabilistic sensitivity analyses addressed uncertainty in all model parameters.</p> <p>Results</p> <p>Breast MRI provided 14.1 discounted quality-adjusted life-years (QALYs) at a discounted cost of 18,167whilemammographyprovided14.0QALYsatacostof18,167 while mammography provided 14.0 QALYs at a cost of 4,760 over 25 years of screening. The incremental cost-effectiveness ratio of breast MRI compared to mammography was 179,599/QALY.Inunivariateanalysis,breastMRIscreeningbecame<179,599/QALY. In univariate analysis, breast MRI screening became < 50,000/QALY when the cost of the MRI was < 315.Intheprobabilisticsensitivityanalysis,MRIscreeningproducedanethealthbenefitof−0.202QALYs(95315. In the probabilistic sensitivity analysis, MRI screening produced a net health benefit of -0.202 QALYs (95% central range: -0.767 QALYs to +0.439 QALYs) compared to mammography at a willingness-to-pay threshold of 50,000/QALY. Breast MRI screening was superior in 0%, < 50,000/QALYin2250,000/QALY in 22%, > 50,000/QALY in 34%, and inferior in 44% of trials.</p> <p>Conclusion</p> <p>Although breast MRI may provide health benefits when compared to mammographic screening for some high risk women, it does not appear to be cost-effective even at willingness to pay thresholds above $120,000/QALY.</p

    The hydrocephalus inducing gene product, Hydin, positions axonemal central pair microtubules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Impairment of cilia and flagella function underlies a growing number of human genetic diseases. Mutations in <it>hydin </it>in <it>hy3 </it>mice cause lethal communicating hydrocephalus with early onset. Hydin was recently identified as an axonemal protein; however, its function is as yet unknown.</p> <p>Results</p> <p>Here we use RNAi in <it>Trypanosoma brucei </it>to address this issue and demonstrate that loss of Hydin causes slow growth and a loss of cell motility. We show that two separate defects in newly-formed flagellar central pair microtubules underlie the loss of cell motility. At early time-points after RNAi induction, the central pair becomes mispositioned, while at later time points the central pair is lost. While the basal body is unaffected, both defects originate at the basal plate, reflecting a role for TbHydin throughout the length of the central pair.</p> <p>Conclusion</p> <p>Our data provide the first evidence of Hydin's role within the trypanosome axoneme, and reveal central pair anomalies and thus impairment of ependymal ciliary motility as the likely cause of the hydrocephalus observed in the <it>hy3 </it>mouse.</p
    • …
    corecore