1,150 research outputs found
Deceleration and Dispersion of Large-scale Coronal Bright Fronts
One of the most dramatic manifestations of solar activity are large-scale
coronal bright fronts (CBFs) observed in extreme ultraviolet (EUV) images of
the solar atmosphere. To date, the energetics and kinematics of CBFs remain
poorly understood, due to the low image cadence and sensitivity of previous EUV
imagers and the limited methods used to extract the features. In this paper,
the trajectory and morphology of CBFs was determined in order to investigate
the varying properties of a sample of CBFs, including their kinematics and
pulse shape, dispersion, and dissipation. We have developed a semi-automatic
intensity profiling technique to extract the morphology and accurate positions
of CBFs in 2.5-10 min cadence images from STEREO/EUVI. The technique was
applied to sequences of 171A and 195A images from STEREO/EUVI in order to
measure the wave properties of four separate CBF events. Following launch at
velocities of ~240-450kms^{-1} each of the four events studied showed
significant negative acceleration ranging from ~ -290 to -60ms^{-2}. The CBF
spatial and temporal widths were found to increase from ~50 Mm to ~200 Mm and
~100 s to ~1500 s respectively, suggesting that they are dispersive in nature.
The variation in position-angle averaged pulse-integrated intensity with
propagation shows no clear trend across the four events studied. These results
are most consistent with CBFs being dispersive magnetoacoustic waves.Comment: 15 pages, 18 figure
On-line PCA with Optimal Regrets
We carefully investigate the on-line version of PCA, where in each trial a
learning algorithm plays a k-dimensional subspace, and suffers the compression
loss on the next instance when projected into the chosen subspace. In this
setting, we analyze two popular on-line algorithms, Gradient Descent (GD) and
Exponentiated Gradient (EG). We show that both algorithms are essentially
optimal in the worst-case. This comes as a surprise, since EG is known to
perform sub-optimally when the instances are sparse. This different behavior of
EG for PCA is mainly related to the non-negativity of the loss in this case,
which makes the PCA setting qualitatively different from other settings studied
in the literature. Furthermore, we show that when considering regret bounds as
function of a loss budget, EG remains optimal and strictly outperforms GD.
Next, we study the extension of the PCA setting, in which the Nature is allowed
to play with dense instances, which are positive matrices with bounded largest
eigenvalue. Again we can show that EG is optimal and strictly better than GD in
this setting
Plasma heating in the very early and decay phases of solar flares
In this paper we analyze the energy budgets of two single-loop solar flares
under the assumption that non-thermal electrons are the only source of plasma
heating during all phases of both events. The flares were observed by the
Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Geostationary
Operational Environmental Satellite (GOES) on September 20, 2002 and March 17,
2002, respectively. For both investigated flares we derived the energy fluxes
contained in non-thermal electron beams from the RHESSI observational data
constrained by observed GOES light-curves. We showed that energy delivered by
non-thermal electrons was fully sufficient to fulfil the energy budgets of the
plasma during the pre-heating and impulsive phases of both flares as well as
during the decay phase of one of them. We concluded that in the case of the
investigated flares there was no need to use any additional ad-hoc heating
mechanisms other than heating by non-thermal electrons.Comment: 22 pages, 10 figures, The Astrophysical Journal (accepted, March
2011
High cadence observations of a global coronal wave by EUVI/STEREO
We report a large-scale coronal wave (so-called "EIT wave") observed with
high cadence by EUVI onboard STEREO in association with the GOES B9.5 flare and
double CME event on 19 May 2007. The EUVI instruments provide us with the
unprecedented opportunity to study the {\it dynamics} of flare/CME associated
coronal waves imaged in the extreme ultraviolet. The coronal wave under study
reveals deceleration, indicative of a freely propagating MHD wave.
Complementary analysis of the associated flare and erupting filament/CME hint
at wave initiation by the CME expanding flanks, which drive the wave only over
a limited distance. The associated flare is very weak and occurs too late to
account for the wave initiation.Comment: Astrophysical Journal Letters (in press
Coronal Shock Waves, EUV waves, and their Relation to CMEs. II. Modeling MHD Shock Wave Propagation Along the Solar Surface, Using Nonlinear Geometrical Acoustics
We model the propagation of a coronal shock wave, using nonlinear geometrical
acoustics. The method is based on the Wentzel-Kramers-Brillouin (WKB) approach
and takes into account the main properties of nonlinear waves: i) dependence of
the wave front velocity on the wave amplitude, ii) nonlinear dissipation of the
wave energy, and iii) progressive increase in the duration of solitary shock
waves. We address the method in detail and present results of the modeling of
the propagation of shock-associated extreme-ultraviolet (EUV) waves as well as
Moreton waves along the solar surface in the simplest solar corona model. The
calculations reveal deceleration and lengthening of the waves. In contrast,
waves considered in the linear approximation keep their length unchanged and
slightly accelerate.Comment: 15 pages, 7 figures, accepted for publication in Solar Physic
Spectroscopic analysis of interaction between an EIT wave and a coronal upflow region
We report a spectroscopic analysis of an EIT wave event that occurred in
active region 11081 on 2010 June 12 and was associated with an M2.0 class
flare. The wave propagated near circularly. The south-eastern part of the wave
front passed over an upflow region nearby a magnetic bipole. Using EIS raster
observations for this region, we studied the properties of plasma dynamics in
the wave front, as well as the interaction between the wave and the upflow
region. We found a weak blueshift for the Fe XII {\lambda}195.12 and Fe XIII
{\lambda}202.04 lines in the wave front. The local velocity along the solar
surface, which is deduced from the line of sight velocity in the wave front and
the projection effect, is much lower than the typical propagation speed of the
wave. A more interesting finding is that the upflow and non-thermal velocities
in the upflow region are suddenly diminished after the transit of the wave
front. This implies a significant change of magnetic field orientation when the
wave passed. As the lines in the upflow region are redirected, the velocity
along the line of sight is diminished as a result. We suggest that this
scenario is more in accordance with what was proposed in the field-line
stretching model of EIT waves.Comment: 13 pages, 7 figures, accepted for publication in Ap
Analysis of a global Moreton wave observed on October 28, 2003
We study the well pronounced Moreton wave that occurred in as- sociation with
the X17.2 are/CME event of October 28, 2003. This Moreton wave is striking for
its global propagation and two separate wave centers, which implies that two
waves were launched simultane- ously. The mean velocity of the Moreton wave,
tracked within different sectors of propagation direction, lies in the range of
v ~ 900-1100 km/s with two sectors showing wave deceleration. The perturbation
profile analysis of the wave indicates amplitude growth followed by amplitude
weakening and broadening of the perturbation profile, which is con- sistent
with a disturbance first driven and then evolving into a freely propagating
wave. The EIT wavefront is found to lie on the same kinematical curve as the
Moreton wavefronts indicating that both are different signatures of the same
physical process. Bipolar coronal dim- mings are observed on the same opposite
East-West edges of the active region as the Moreton wave ignition centers. The
radio type II source, which is co-spatially located with the first wave front,
indicates that the wave was launched from an extended source region (& 60 Mm).
These findings suggest that the Moreton wave is initiated by the CME expanding
flanks.Comment: accepted to Ap
Looking at Vector Space and Language Models for IR using Density Matrices
In this work, we conduct a joint analysis of both Vector Space and Language
Models for IR using the mathematical framework of Quantum Theory. We shed light
on how both models allocate the space of density matrices. A density matrix is
shown to be a general representational tool capable of leveraging capabilities
of both VSM and LM representations thus paving the way for a new generation of
retrieval models. We analyze the possible implications suggested by our
findings.Comment: In Proceedings of Quantum Interaction 201
- …
