129 research outputs found

    Does Non-Moral Ignorance Exculpate? Situational Awareness and Attributions of Blame and Forgiveness

    Get PDF
    In this paper, we set out to test empirically an idea that many philosophers find intuitive, namely that non-moral ignorance can exculpate. Many philosophers find it intuitive that moral agents are responsible only if they know the particular facts surrounding their action. Our results show that whether moral agents are aware of the facts surrounding their action does have an effect on people’s attributions of blame, regardless of the consequences or side effects of the agent’s actions. In general, it was more likely that a situationally aware agent will be blamed for failing to perform the obligatory action than a situationally unaware agent. We also tested attributions of forgiveness in addition to attributions of blame. In general, it was less likely that a situationally aware agent will be forgiven for failing to perform the obligatory action than a situationally unaware agent. When the agent is situationally unaware, it is more likely that the agent will be forgiven than blamed. We argue that these results provide some empirical support for the hypothesis that there is something intuitive about the idea that non-moral ignorance can exculpate

    Transformation and analysis of tobacco plant var Petit havana with T-urf13 gene under anther-specific TA29 promoter

    Get PDF
    T-urf13, a well-documented cms-associated gene from maize, has been shown to render methomyl sensitivity to heterologous systems like rice, yeast and bacteria when expressed constitutively. Since these transgenic plants were fertile, it was hypothesized that T-urf13 gene if expressed in anthers may result in male sterility that could be used for hybrid seed production. Hence, this work was aimed at analysing whether T-urf13 gene when expressed in anthers can result in male sterile plants or requires methomyl treatment to cause male sterility (controllable). This is the first report of transformation of tobacco with T-urf13 gene under anther-specific promoter (TA29) with or without mitochondrial targeting sequence. Most of the transgenic plants obtained were fertile; this was surprising as many male sterile plants were expected as T-urf13 gene is a cms associated gene. Our results suggest that it may not be possible to obtain male sterility by expressing URF13 in the anther by itself or by methomyl application

    Analysis of the Maize dicer-like1 Mutant, fuzzy tassel, Implicates MicroRNAs in Anther Maturation and Dehiscence

    Get PDF
    Sexual reproduction in plants requires development of haploid gametophytes from somatic tissues. Pollen is the male gametophyte and develops within the stamen; defects in the somatic tissues of the stamen and in the male gametophyte itself can result in male sterility. The maize fuzzy tassel (fzt) mutant has a mutation in dicer-like1 (dcl1), which encodes a key enzyme required for microRNA (miRNA) biogenesis. Many miRNAs are reduced in fzt, and fzt mutants exhibit a broad range of developmental defects, including male sterility. To gain further insight into the roles of miRNAs in maize stamen development, we conducted a detailed analysis of the male sterility defects in fzt mutants. Early development was normal in fzt mutant anthers, however fzt anthers arrested in late stages of anther maturation and did not dehisce. A minority of locules in fzt anthers also exhibited anther wall defects. At maturity, very little pollen in fzt anthers was viable or able to germinate. Normal pollen is tricellular at maturity; pollen from fzt anthers included a mixture of unicellular, bicellular, and tricellular pollen. Pollen from normal anthers is loaded with starch before dehiscence, however pollen from fzt anthers failed to accumulate starch. Our results indicate an absolute requirement for miRNAs in the final stages of anther and pollen maturation in maize. Anther wall defects also suggest that miRNAs have key roles earlier in anther development. We discuss candidate miRNAs and pathways that might underlie fzt anther defects, and also note that male sterility in fzt resembles water deficit-induced male sterility, highlighting a possible link between development and stress responses in plants.ECU Open Access Publishing Support Fun

    Significant genetic differentiation among populations of Anomalocardia brasiliana (Gmelin, 1791): A bivalve with planktonic larval dispersion

    Get PDF
    Four Brazilian populations of Anomalocardia brasiliana were tested for mutual genetic homogeneity, using data from 123 sequences of the mtDNA cytochrome oxidase c subunit I gene. A total of 36 haplotypes were identified, those shared being H3 (Canela Island, Prainha and Acupe) and both H5 and H9 (Prainha and Acupe). Haplotype diversity values were high, except for the Camurupim population, whereas nucleotide values were low in all the populations, except for that of Acupe. Only the Prainha population showed a deviation from neutrality and the SSD test did not reject the demographic expansion hypothesis. Fst values showed that the Prainha and Acupe populations represent a single stock, whereas in both the Canela Island and Camurupim stocks, population structures are different and independent. The observed structure at Canela Island may be due to the geographic distance between this population and the remainder. The Camurupim population does not share any haplotype with the remaining populations in northeastern Brazil. The apparent isolation could be due to the rocky barrier located facing the mouth of the Mamanguape River. The results highlight the importance of wide-scale studies to identify and conserve local genetic diversity, especially where migration is restricted

    Eag and HERG potassium channels as novel therapeutic targets in cancer

    Get PDF
    Voltage gated potassium channels have been extensively studied in relation to cancer. In this review, we will focus on the role of two potassium channels, Ether Γ -go-go (Eag), Human ether Γ -go-go related gene (HERG), in cancer and their potential therapeutic utility in the treatment of cancer. Eag and HERG are expressed in cancers of various organs and have been implicated in cell cycle progression and proliferation of cancer cells. Inhibition of these channels has been shown to reduce proliferation both in vitro and vivo studies identifying potassium channel modulators as putative inhibitors of tumour progression. Eag channels in view of their restricted expression in normal tissue may emerge as novel tumour biomarkers

    Inhibition of HERG1 K+ channel protein expression decreases cell proliferation of human small cell lung cancer cells

    Get PDF
    HERG (human ether-Γ -go-go-related gene) K+ currents fulfill important ionic functions in cardiac and other excitable cells. In addition, HERG channels influence cell growth and migration in various types of tumor cells. The mechanisms underlying these functions are still not resolved. Here, we investigated the role of HERG channels for cell growth in a cell line (SW2) derived from small cell lung cancer (SCLC), a malignant variant of lung cancer. The two HERG1 isoforms (HERG1a, HERG1b) as well as HERG2 and HERG3 are expressed in SW2 cells. Inhibition of HERG currents by acute or sustained application of E-4031, a specific ERG channel blocker, depolarized SW2 cells by 10–15Β mV. This result indicated that HERG K+ conductance contributes considerably to the maintenance of the resting potential of about βˆ’45Β mV. Blockage of HERG channels by E-4031 for up to 72Β h did not affect cell proliferation. In contrast, siRNA-induced inhibition of HERG1 protein expression decreased cell proliferation by about 50%. Reduction of HERG1 protein expression was confirmed by Western blots. HERG current was almost absent in SW2 cells transfected with siRNA against HERG1. Qualitatively similar results were obtained in three other SCLC cell lines (OH1, OH3, H82), suggesting that the HERG1 channel protein is involved in SCLC cell growth, whereas the ion-conducting function of HERG1 seems not to be important for cell growth

    Membranes with the Same Ion Channel Populations but Different Excitabilities

    Get PDF
    Electrical signaling allows communication within and between different tissues and is necessary for the survival of multicellular organisms. The ionic transport that underlies transmembrane currents in cells is mediated by transporters and channels. Fast ionic transport through channels is typically modeled with a conductance-based formulation that describes current in terms of electrical drift without diffusion. In contrast, currents written in terms of drift and diffusion are not as widely used in the literature in spite of being more realistic and capable of displaying experimentally observable phenomena that conductance-based models cannot reproduce (e.g. rectification). The two formulations are mathematically related: conductance-based currents are linear approximations of drift-diffusion currents. However, conductance-based models of membrane potential are not first-order approximations of drift-diffusion models. Bifurcation analysis and numerical simulations show that the two approaches predict qualitatively and quantitatively different behaviors in the dynamics of membrane potential. For instance, two neuronal membrane models with identical populations of ion channels, one written with conductance-based currents, the other with drift-diffusion currents, undergo transitions into and out of repetitive oscillations through different mechanisms and for different levels of stimulation. These differences in excitability are observed in response to excitatory synaptic input, and across different levels of ion channel expression. In general, the electrophysiological profiles of membranes modeled with drift-diffusion and conductance-based models having identical ion channel populations are different, potentially causing the input-output and computational properties of networks constructed with these models to be different as well. The drift-diffusion formulation is thus proposed as a theoretical improvement over conductance-based models that may lead to more accurate predictions and interpretations of experimental data at the single cell and network levels
    • …
    corecore