17 research outputs found

    Biophysical studies of the translation-regulating add adenine riboswitch from Vibrio vulnificus

    No full text
    Bacterial gene expression can be regulated at mRNA level by cis-acting mRNA elements termed riboswitches. Riboswitches operate by conformational switching between a ligand-free and a ligand-bound state with different structures that either activate or inhibit gene expression. This PhD thesis contributes to the molecular level understanding of full-length purine riboswitches. It presents biophysical investigations on the ligand-dependent folding of the full-length translation-regulating add adenine riboswitch from the gram-negative human pathogenic marine bacterium Vibrio vulnificus (Asw). Asw has the typical bipartite riboswitch architecture with a 5’ ligand-sensing aptamer domain and a 3’ regulatory domain termed expression platform. According to the working hypothesis, Asw employs a unique thermodynamically-controlled 3-state conformational switching mechanism between an apoB, an apoA and a holo conformation to regulate translation initiation in a temperature-compensated manner. The two apo conformations are the putative translation-OFF states and the holo conformation is the putative translation-ON state of Asw. In the main project of this PhD thesis, an integrated nuclear magnetic resonance (NMR) and smFRET spectroscopic study of the full-length 112-nucleotide Asw (112Asw) was performed. The adenine-dependent folding of 112Asw was monitored at the level of base pairing interactions by NMR of the RNA imino protons, and at the level of three long-range intramolecular distances by smFRET of immobilized molecules. The integrated NMR and smFRET spectroscopic study of 112Asw yielded two major findings. First, NMR and smFRET both revealed that adenine binding to 112Asw impedes apoB formation by stabilizing the apoA secondary structure in the holo conformation without modulating tertiary structural interactions between the two riboswitch domains. This highlights the central role of competitive P1 and P4 helix formation at the interface of the aptamer and the expression platform for switching the accessibility of the ribosome binding site of 112Asw. Moreover, it strongly corroborates the hypothesis that purine riboswitches in general operate according to the key principle of a spatially decoupled secondary structural allosteric switch that proceeds without ligand-induced tertiary structural interactions between the aptamer domain and the expression platform. Second, it was uncovered by smFRET that the apoA and the holo conformation of 112Asw do not adopt a single folding state at near-physiological Mg2+ concentration. Instead, apoA and holo exhibit a persistent dynamic equilibrium between substates with an undocked (U), a short-lived docked (D1; ~s) and a Mg2+-bound long-lived docked (D2; ~10 s) aptamer kissing loop motif. In the holo conformation, the fractional population of the long-lived docked substate is ~2-fold increased compared to the apoA conformation, but undocked and docked substates are still comparably stable. The here described multiple folding states of the apoA and the holo conformation might have regulatory properties that are in between the apoB translation-OFF state and the holo-D2 translation-ON state. Additonally, an integrated NMR and smFRET analysis of 127-nucleotide Asw (127Asw) is presented. Compared to 112Asw, 127Asw is 3’-elongated by 15 nucleotides of the adenosine deaminase encoding sequence of the add gene from Vibrio vulnificus. 127Asw was chosen as mRNA template for future investigations of the interaction between Asw and the 30S ribosomal subunit. The NMR spectra of 127Asw demonstrated that 127Asw has the same overall secondary structure as 112Asw. Like for 112Asw, the combined NMR and smFRET analysis of 127Asw showed that adenine binding impedes apoB formation and stabilizes a long-lived docked aptamer kissing loop fold. However, compared to 112Asw, 127Asw has a destabilized aptamer kissing loop motif and a stabilized P4 helix in the expression platform. Finally, ligand-observed studies of the transient encounter complex between Asw and the near-cognate ligand hypoxanthine are described. By competition binding WaterLOGSY NMR experiments with hypoxanthine and the adenine analogue 2,6-diaminopurine, it could be shown that hypoxanthine binds to the same binding site of 112Asw as the cognate ligand adenine. The hypoxanthine binding constant measured with the WaterLOGSY method is in the low mM range (1.8 mM) and substantially exceeds the physiological hypoxanthine concentration in E. coli (~0.3 mM), thus ruling out that hypoxanthine binding can significantly impact the translational regulation of Asw in vivo. Also, preliminary FTIR difference spectra of 13C,15N-labelled and unlabelled hypoxanthine in complex with the pbuE adenine riboswitch aptamer and the xpt guanine riboswitch aptamer are discussed. These spectra showed a pattern of multiple IR bands that appeared to be characteristic for the respective complex

    Autonomous Procedure Execution: A Means Of Reducing Rosetta Operations Cost

    No full text

    Biocatalytic production of bicyclic β-lactams with three contiguous chiral centres using engineered crotonases

    No full text
    There is a need to develop asymmetric routes to functionalised β-lactams, which remain the most important group of antibacterials. Here we describe biocatalytic and protein engineering studies concerning carbapenem biosynthesis enzymes, aiming to enable stereoselective production of functionalised carbapenams with three contiguous chiral centres. Structurally-guided substitutions of wildtype carboxymethylproline synthases enable tuning of their C-N and C-C bond forming capacity to produce 5-carboxymethylproline derivatives substituted at C-4 and C-6, from amino acid aldehyde and malonyl-CoA derivatives. Use of tandem enzyme incubations comprising an engineered carboxymethylproline synthase and an alkylmalonyl-CoA forming enzyme (i.e. malonyl-CoA synthetase or crotonyl-CoA carboxylase reductase) can improve stereocontrol and expand the product range. Some of the prepared 4,6-disubstituted-5-carboxymethylproline derivatives are converted to bicyclic β-lactams by carbapenam synthetase catalysis. The results illustrate the utility of tandem enzyme systems involving engineered crotonases for asymmetric bicyclic β-lactam synthesis

    Switching at the ribosome: riboswitches need rProteins as modulators to regulate translation

    No full text
    Translational riboswitches are cis-acting RNA regulators that modulate the expression of genes during translation initiation. Their mechanism is considered as an RNA-only gene-regulatory system inducing a ligand-dependent shift of the population of functional ON- and OFF-states. The interaction of riboswitches with the translation machinery remained unexplored. For the adenine-sensing riboswitch from Vibrio vulnificus we show that ligand binding alone is not sufficient for switching to a translational ON-state but the interaction of the riboswitch with the 30S ribosome is indispensable. Only the synergy of binding of adenine and of 30S ribosome, in particular protein rS1, induces complete opening of the translation initiation region. Our investigation thus unravels the intricate dynamic network involving RNA regulator, ligand inducer and ribosome protein modulator during translation initiation

    Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy

    No full text
    The full-length translation-regulating add adenine riboswitch (Asw) from Vibrio vulnificus has a more complex conformational space than its isolated aptamer domain. In addition to the predicted apo (apoA) and holo conformation that feature the conserved three-way junctional purine riboswitch aptamer, it adopts a second apo (apoB) conformation with a fundamentally different secondary structure. Here, we characterized the ligand-dependent conformational dynamics of the full-length add Asw by NMR and by single-molecule FRET (smFRET) spectroscopy. Both methods revealed an adenine-induced secondary structure switch from the apoB-form to the apoA-form that involves no tertiary structural interactions between aptamer and expression platform. This strongly suggests that the add Asw triggers translation by capturing the apoA-form secondary structure in the holo state. Intriguingly, NMR indicated a homogenous, docked aptamer kissing loop fold for apoA and holo, while smFRET showed persistent aptamer kissing loop docking dynamics between comparably stable, undocked and docked substates of the apoA and the holo conformation. Unraveling the folding of large junctional riboswitches thus requires the integration of complementary solution structural techniques such as NMR and smFRET

    Venus Express: Scientific goals, instrumentation, and scenario of the mission

    No full text
    The first European mission to Venus (Venus Express) is described. It is based on a repeated use of the Mars Express design with minor modifications dictated in the main by more severe thermal environment at Venus. The main scientific task of the mission is global exploration of the Venusian atmosphere, circumplanetary plasma, and the planet surface from an orbiting spacecraft. The Venus Express payload includes seven instruments, five of which are inherited from the missions Mars Express and Rosetta. Two instruments were specially designed for Venus Express. The advantages of Venus Express in comparison with previous missions are in using advanced instrumentation and methods of remote sounding, as well as a spacecraft with a broad spectrum of capabilities of orbital observations. © Pleiades Publishing, Inc., 2006
    corecore