101 research outputs found

    Real time thermal imaging of high temperature semiconductor melts

    Get PDF
    A real time thermal imaging system with temperature resolution better than + or - 1 C and spatial resolution of better than 0.5 mm was developed and applied to the analysis of melt surface thermal field distributions in both Czochralski and liquid encapsulated Czochralski (LEC) growth configurations. The melt is viewed in near normal incidence by a high resolution charge coupled device camera to which is attached a very narrow bandpass filter. The resulting image is digitized and processed using a pipelined pixel processor operating at an effective 40 million operations per second thus permitting real time high frequency spatial and temporal filtering of the high temperature scene. A multi-pixel averaging algorithm was developed which permits localized, low noise sensing of temperature variations at any location in the hot zone as a function of time. This signial is used to implement initial elements of a feedforward growth control scheme which is aimed at reducing disturbances to the melt caused by the batch nature of the growth process. The effect of magnetic melt stabilization on radial melt temperature distributions was measured using this technique. Problems associated with residual internal reflections and non-optimized path geometry are discussed

    Use of anomolous thermal imaging effects for multi-mode systems control during crystal growth

    Get PDF
    Real time image processing techniques, combined with multitasking computational capabilities are used to establish thermal imaging as a multimode sensor for systems control during crystal growth. Whereas certain regions of the high temperature scene are presently unusable for quantitative determination of temperature, the anomalous information thus obtained is found to serve as a potentially low noise source of other important systems control output. Using this approach, the light emission/reflection characteristics of the crystal, meniscus and melt system are used to infer the crystal diameter and a linear regression algorithm is employed to determine the local diameter trend. This data is utilized as input for closed loop control of crystal shape. No performance penalty in thermal imaging speed is paid for this added functionality. Approach to secondary (diameter) sensor design and systems control structure is discussed. Preliminary experimental results are presented

    Microgravity: a Teacher's Guide with Activities, Secondary Level

    Get PDF
    This NASA Educational Publication is a teacher's guide that focuses on microgravity for the secondary level student. The introduction answers the question 'What is microgravity?', as well as describing gravity and creating microgravity. Following the introduction is a microgravity primer which covers such topics as the fluid state, combustion science, materials science, biotechnology, as well as microgravity and space flight. Seven different activities are described in the activities section and are written by authors prominent in the field. The concluding sections of the book include a glossary, microgravity references, and NASA educational resources

    Microgravity: A Teacher's Guide With Activities in Science, Mathematics, and Technology

    Get PDF
    The purpose of this curriculum supplement guide is to define and explain microgravity and show how microgravity can help us learn about the phenomena of our world. The front section of the guide is designed to provide teachers of science, mathematics, and technology at many levels with a foundation in microgravity science and applications. It begins with background information for the teacher on what microgravity is and how it is created. This is followed with information on the domains of microgravity science research; biotechnology, combustion science, fluid physics, fundamental physics, materials science, and microgravity research geared toward exploration. The background section concludes with a history of microgravity research and the expectations microgravity scientists have for research on the International Space Station. Finally, the guide concludes with a suggested reading list, NASA educational resources including electronic resources, and an evaluation questionnaire

    Microgravity: Teacher's guide with activities for physical science

    Get PDF
    This guide is an educational tool for teachers of grades 5 through 12. It is an introduction to microgravity and its application to spaceborne laboratory experiments. Specific payloads and missions are mentioned with limited detail, including Spacelab, the International Microgravity Laboratory, and the United States Microgravity Laboratory. Activities for students demonstrate chemistry, mathematics, and physics applications of microgravity. Activity objectives include: modeling how satellites orbit Earth; demonstrating that free fall eliminates the local effects of gravity; measuring the acceleration environments created by different motions; using a plasma sheet to observe acceleration forces that are experienced on board a space vehicle; demonstrating how mass can be measured in microgravity; feeling how inertia affects acceleration; observing the gravity-driven fluid flow that is caused by differences in solution density; studying surface tension and the fluid flows caused by differences in surface tension; illustrating the effects of gravity on the burning rate of candles; observing candle flame properties in free fall; measuring the contact angle of a fluid; illustrating the effects of gravity and surface tension on fiber pulling; observing crystal growth phenomena in a 1-g environment; investigating temperature effects on crystal growth; and observing crystal nucleation and growth rate during directional solidification. Each activity includes a background section, procedure, and follow-up questions

    A preexisting rare PIK3CA e545k subpopulation confers clinical resistance to MEK plus CDK4/6 inhibition in NRAS melanoma and is dependent on S6K1 signaling

    Get PDF
    Combined MEK and CDK4/6 inhibition (MEKi + CDK4i) has shown promising clinical outcomes in patients with NRAS- mutant melanoma. Here, we interrogated longitudinal biopsies from a patient who initially responded to MEKi + CDK4i therapy but subsequently developed resistance. Whole-exome sequencing and functional validation identified an acquired PIK3CA E545K mutation as conferring drug resistance. We demonstrate that PIK3CA E545K preexisted in a rare subpopulation that was missed by both clinical and research testing, but was revealed upon multiregion sampling due to PIK3CA E545K being nonuniformly distributed. This resistant population rapidly expanded after the initiation of MEKi + CDK4i therapy and persisted in all successive samples even after immune checkpoint therapy and distant metastasis. Functional studies identified activated S6K1 as both a key marker and specific therapeutic vulnerability downstream of PIK3CA E545K -induced resistance. These results demonstrate that difficult-to-detect preexisting resistance mutations may exist more often than previously appreciated and also posit S6K1 as a common downstream therapeutic nexus for the MAPK, CDK4/6, and PI3K pathways. SIGNIFICANCE: We report the first characterization of clinical acquired resistance to MEKi + CDK4i, identifying a rare preexisting PIK3CA E545K subpopulation that expands upon therapy and exhibits drug resistance. We suggest that single-region pretreatment biopsy is insufficient to detect rare, spatially segregated drug-resistant subclones. Inhibition of S6K1 is able to resensitize PIK3CA E545K -expressing NRAS-mutant melanoma cells to MEKi + CDK4i. © 2018 AAC

    Progress report no. 7

    Get PDF
    Statement of responsibility on title-page reads: editor: M.J. Driscoll; contributors: D.C. Aldrich, M.J. Driscoll, O.K. Kadiroglu, S. Keyvan, H.U.R. Khan, D.D. Lanning, R. Morton, J. Pasztor, T.J. Reckart, A.A. Salehi, J.I. Shin, A.T. Supple, D.J. Wargo, and S.S. WuIncludes bibliographical referencesProgress report; September 30, 1976U.S. Atomic Energy Commission contracts: E(11-1) 225

    Prognostic model for patient survival in primary anorectal mucosal melanoma:stage at presentation determines relevance of histopathologic features

    Get PDF
    Pathological staging of primary anorectal mucosal melanoma is often performed according to the American Joint Commission on Cancer (AJCC) guidelines for cutaneous melanoma, as an anorectal melanoma-specific staging system does not exist. However, it remains unknown whether prognostic factors derived for cutaneous melanoma also stratify risk in anorectal melanoma. We retrospectively determined correlations between clinicopathological parameters and disease-specific survival in 160 patients. Patients were grouped by clinical stage at presentation (localized disease, regional or distant metastases). Cox proportional hazards regression models determined associations with disease-specific survival. We also summarized the somatic mutations identified in a subset of tumors analyzed for hotspot mutations in cancer-associated gene panels. Most of the patients were white (82%) and female (61%). The median age was 62 years. With a median follow-up of 1.63 years, median disease-specific survival was 1.75 years, and 121 patients (76%) died of anorectal melanoma. Patients presenting with regional (34%) or distant metastases (24%) had significantly shorter disease-specific survival compared to those with disease localized to the anorectum (42%). Of the 71 anorectal melanoma tumors analyzed for hotspot genetic alterations, somatic mutations involving the KIT gene (24%) were most common followed by NRAS (19%). Increasing primary tumor thickness, lymphovascular invasion, and absence of regression also correlated with shorter disease-specific survival. Primary tumor parameters correlated with shorter disease-specific survival in patients presenting with localized disease (tumor thickness) or regional metastases (tumor thickness, absence of regression, and lymphovascular invasion), but not in patients presenting with distant metastases. Grouping of patients according to a schema based on modifications of the 8th edition AJCC cutaneous melanoma staging system stratified survival in anorectal melanoma. Our findings support stage-specific associations between primary tumor parameters and disease-specific survival in anorectal melanoma. Moreover, the AJCC cutaneous melanoma staging system and minor modifications of it predicted survival among anorectal melanoma patients

    Targeting endothelin receptor signalling overcomes heterogeneity driven therapy failure

    Get PDF
    Approaches to prolong responses to BRAF targeting drugs in melanoma patients are challenged by phenotype heterogeneity. Melanomas of a “MITF‐high” phenotype usually respond well to BRAF inhibitor therapy, but these melanomas also contain subpopulations of the de novo resistance “AXL‐high” phenotype. > 50% of melanomas progress with enriched “AXL‐high” populations, and because AXL is linked to de‐differentiation and invasiveness avoiding an “AXL‐high relapse” is desirable. We discovered that phenotype heterogeneity is supported during the response phase of BRAF inhibitor therapy due to MITF‐induced expression of endothelin 1 (EDN1). EDN1 expression is enhanced in tumours of patients on treatment and confers drug resistance through ERK re‐activation in a paracrine manner. Most importantly, EDN1 not only supports MITF‐high populations through the endothelin receptor B (EDNRB), but also AXL‐high populations through EDNRA, making it a master regulator of phenotype heterogeneity. Endothelin receptor antagonists suppress AXL‐high‐expressing cells and sensitize to BRAF inhibition, suggesting that targeting EDN1 signalling could improve BRAF inhibitor responses without selecting for AXL‐high cells
    • 

    corecore