60 research outputs found

    The Effect of Structural Complexity, Prey Density, and “Predator-Free Space” on Prey Survivorship at Created Oyster Reef Mesocosms

    Get PDF
    Interactions between predators and their prey are influenced by the habitat they occupy. Using created oyster (Crassostrea virginica) reef mesocosms, we conducted a series of laboratory experiments that created structure and manipulated complexity as well as prey density and “predator-free space” to examine the relationship between structural complexity and prey survivorship. Specifically, volume and spatial arrangement of oysters as well as prey density were manipulated, and the survivorship of prey (grass shrimp, Palaemonetes pugio) in the presence of a predator (wild red drum, Sciaenops ocellatus) was quantified. We found that the presence of structure increased prey survivorship, and that increasing complexity of this structure further increased survivorship, but only to a point. This agrees with the theory that structural complexity may influence predator-prey dynamics, but that a threshold exists with diminishing returns. These results held true even when prey density was scaled to structural complexity, or the amount of “predator-free space” was manipulated within our created reef mesocosms. The presence of structure and its complexity (oyster shell volume) were more important in facilitating prey survivorship than perceived refugia or density-dependent prey effects. A more accurate indicator of refugia might require “predator-free space” measures that also account for the available area within the structure itself (i.e., volume) and not just on the surface of a structure. Creating experiments that better mimic natural conditions and test a wider range of “predator-free space” are suggested to better understand the role of structural complexity in oyster reefs and other complex habitats

    Predicting predatory impact of juvenile invasive lionfish (Pterois volitans) on a crustacean prey using functional response analysis: effects of temperature, habitat complexity and light regimes

    Get PDF
    The ecological implications of biotic interactions, such as predator-prey relationships, are often context-dependent. Comparative functional responses analysis can be used under different abiotic contexts to improve understanding and prediction of the ecological impact of invasive species. Pterois volitans (Lionfish) [Linnaeus 1758] is an established invasive species in the Caribbean and Gulf of Mexico, with a more recent invasion into the Mediterranean. Lionfish are generalist predators that impact a wide range of commercial and non-commercial species. Functional response analysis was employed to quantify interaction strength between lionfish and a generic prey species, the shrimp (Paleomonetes varians) [Leach 1814], under the contexts of differing temperature, habitat complexity and light wavelength. Lionfish have prey population destabilising Type II functional responses under all contexts examined. Significantly more prey were consumed at 26 °C than at 22 °C. Habitat complexity did not significantly alter the functional response parameters. Significantly more prey were consumed under white light and blue light than under red light. Attack rate was significantly higher under white light than under blue or red light. Light wavelength did not significantly change handling times. The impacts on prey populations through feeding rates may increase with concomitant temperature increase. As attack rates are very high at low habitat complexity this may elucidate the cause of high impact upon degraded reef ecosystems with low-density prey populations, although there was little protection conferred through habitat complexity. Only red light (i.e. dark) afforded any reduction in predation pressure. Management initiatives should account for these environmental factors when planning mitigation and prevention strategies

    Large-scale climatic phenomena drive fluctuations in macroinvertebrate assemblages in lowland tropical streams, Costa Rica: The importance of ENSO events in determining long-term (15y) patterns

    Get PDF
    Understanding how environmental variables influence the distribution and density of organisms over relatively long temporal scales is a central question in ecology given increased climatic variability (e.g., precipitation, ENSO events). The primary goal of our study was to evaluate long-term (15y time span) patterns of climate, as well as environmental parameters in two Neotropical streams in lowland Costa Rica, to assess potential effects on aquatic macroinvertebrates. We also examined the relative effects of an 8y whole-stream P-enrichment experiment on macroinvertebrate assemblages against the backdrop of this long-term study. Climate, environmental variables and macroinvertebrate samples were measured monthly for 7y and then quarterly for an additional 8y in each stream. Temporal patterns in climatic and environmental variables showed high variability over time, without clear inter-annual or intra-annual patterns. Macroinvertebrate richness and abundance decreased with increasing discharge and was positively related to the number of days since the last high discharge event. Findings show that fluctuations in stream physicochemistry and macroinvertebrate assemblage structure are ultimately the result of large-scale climatic phenomena, such as ENSO events, while the 8y P-enrichment did not appear to affect macroinvertebrates. Our study demonstrates that Neotropical lowland streams are highly dynamic and not as stable as is commonly presumed, with high intra- and inter-annual variability in environmental parameters that change the structure and composition of freshwater macroinvertebrate assemblages.This study was financed by National Science Foundation (DEB 1122389) to Catherine M. Pringle. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.UCR::VicerrectorĂ­a de InvestigaciĂłn::Unidades de InvestigaciĂłn::Ciencias BĂĄsicas::Centro de InvestigaciĂłn en Ciencias del Mar y LimnologĂ­a (CIMAR
    • 

    corecore