19,674 research outputs found

    On The Orbital Evolution of Jupiter Mass Protoplanet Embedded in A Self-Gravity Disk

    Full text link
    We performed a series of hydro-dynamic simulations to investigate the orbital migration of a Jovian planet embedded in a proto-stellar disk. In order to take into account of the effect of the disk's self gravity, we developed and adopted an \textbf{Antares} code which is based on a 2-D Godunov scheme to obtain the exact Reimann solution for isothermal or polytropic gas, with non-reflecting boundary conditions. Our simulations indicate that in the study of the runaway (type III) migration, it is important to carry out a fully self consistent treatment of the gravitational interaction between the disk and the embedded planet. Through a series of convergence tests, we show that adequate numerical resolution, especially within the planet's Roche lobe, critically determines the outcome of the simulations. We consider a variety of initial conditions and show that isolated, non eccentric protoplanet planets do not undergo type III migration. We attribute the difference between our and previous simulations to the contribution of a self consistent representation of the disk's self gravity. Nevertheless, type III migration cannot be completely suppressed and its onset requires finite amplitude perturbations such as that induced by planet-planet interaction. We determine the radial extent of type III migration as a function of the disk's self gravity.Comment: 19 pages, 13 figure

    Características de las secuencias deposicionales de alta frecuencia en el sistema arrecifal del Mioceno superior de Mallorca

    Get PDF
    Application of sequence stratigraphy concepts in well-exposed prograding carbonate complexes, such as the example of Mallorca, shows marked peculiarities differing from the commonly used as standard model of the Exxon group. These peculiarities are seen in high-frequency sequences bounded by well-definederosion surfaces. The standard model is incomplete in the sense that it shows no sedimentary record of the fall of the sea-level cycle, except for erosion or karstification. In contrast, the Mallorcan example shows more complete and continuous sedimentary record during the entire sea-level cycle: an offlapping package, commonly ignored or misinterpreted, is deposited during the internal of sea-level fall, and considered as a new systems tract. As a result, the most obvious and marked erosion surface separating these high-frequency packages is the sequence boundary. Furthermore, in the standard model the downlap surface is correlative with the maximum flooding surface and a condensed section. In contrast, the Mallorcan model shows that a condensed section and downlap surface are produced during the offlapping systems tract, whereas the maximum flooding surface are indistinct. There are two surfaces easily recognized in the Mallorcan example: an erosion surface and a downlap surface. On this basis there are two major systems packages or tracts: a lower package with aggradation in all the systems formed during sea-level rise and high-stillstand and an upper package with offlapping progradation formed during sea-level fall and low-stillstand. Al1 the above peculiarities of the Mallorcan prograding reef complex show the need for careful application of the dynamic concepts of sequence stratigraphy, rather than the strict reference to the standard scheme. The relationships between carbonate production and each segment of the sea-level cycle explain these departures from the standard 3rd-order sequencemodel developed from siliciclastic deposits on passive margins

    Características de las secuencias deposicionales de alta frecuencia en el sistema arrecifal del Mioceno superior de Mallorca

    Get PDF
    Application of sequence stratigraphy concepts in well-exposed prograding carbonate complexes, such as the example of Mallorca, shows marked peculiarities differing from the commonly used as standard model of the Exxon group. These peculiarities are seen in high-frequency sequences bounded by well-definederosion surfaces. The standard model is incomplete in the sense that it shows no sedimentary record of the fall of the sea-level cycle, except for erosion or karstification. In contrast, the Mallorcan example shows more complete and continuous sedimentary record during the entire sea-level cycle: an offlapping package, commonly ignored or misinterpreted, is deposited during the internal of sea-level fall, and considered as a new systems tract. As a result, the most obvious and marked erosion surface separating these high-frequency packages is the sequence boundary. Furthermore, in the standard model the downlap surface is correlative with the maximum flooding surface and a condensed section. In contrast, the Mallorcan model shows that a condensed section and downlap surface are produced during the offlapping systems tract, whereas the maximum flooding surface are indistinct. There are two surfaces easily recognized in the Mallorcan example: an erosion surface and a downlap surface. On this basis there are two major systems packages or tracts: a lower package with aggradation in all the systems formed during sea-level rise and high-stillstand and an upper package with offlapping progradation formed during sea-level fall and low-stillstand. Al1 the above peculiarities of the Mallorcan prograding reef complex show the need for careful application of the dynamic concepts of sequence stratigraphy, rather than the strict reference to the standard scheme. The relationships between carbonate production and each segment of the sea-level cycle explain these departures from the standard 3rd-order sequencemodel developed from siliciclastic deposits on passive margins

    Evolution of Migrating Planets Undergoing Gas Accretion

    Full text link
    We analyze the orbital and mass evolution of planets that undergo run-away gas accretion by means of 2D and 3D hydrodynamic simulations. The disk torque distribution per unit disk mass as a function of radius provides an important diagnostic for the nature of the disk-planet interactions. We first consider torque distributions for nonmigrating planets of fixed mass and show that there is general agreement with the expectations of resonance theory. We then present results of simulations for mass-gaining, migrating planets. For planets with an initial mass of 5 Earth masses, which are embedded in disks with standard parameters and which undergo run-away gas accretion to one Jupiter mass (Mjup), the torque distributions per unit disk mass are largely unaffected by migration and accretion for a given planet mass. The migration rates for these planets are in agreement with the predictions of the standard theory for planet migration (Type I and Type II migration). The planet mass growth occurs through gas capture within the planet's Bondi radius at lower planet masses, the Hill radius at intermediate planet masses, and through reduced accretion at higher planet masses due to gap formation. During run-away mass growth, a planet migrates inwards by only about 20% in radius before achieving a mass of ~1 Mjup. For the above models, we find no evidence of fast migration driven by coorbital torques, known as Type III migration. We do find evidence of Type III migration for a fixed mass planet of Saturn's mass that is immersed in a cold and massive disk. In this case the planet migration is assumed to begin before gap formation completes. The migration is understood through a model in which the torque is due to an asymmetry in density between trapped gas on the leading side of the planet and ambient gas on the trailing side of the planet.Comment: 26 pages, 29 figures. To appear in The Astrophysical Journal vol.684 (September 20, 2008 issue

    Stringy Black Holes and the Geometry of Entanglement

    Full text link
    Recently striking multiple relations have been found between pure state 2 and 3-qubit entanglement and extremal black holes in string theory. Here we add further mathematical similarities which can be both useful in string and quantum information theory. In particular we show that finding the frozen values of the moduli in the calculation of the macroscopic entropy in the STU model, is related to finding the canonical form for a pure three-qubit entangled state defined by the dyonic charges. In this picture the extremization of the BPS mass with respect to moduli is connected to the problem of finding the optimal local distillation protocol of a GHZ state from an arbitrary pure three-qubit state. These results and a geometric classification of STU black holes BPS and non-BPS can be described in the elegant language of twistors. Finally an interesting connection between the black hole entropy and the average real entanglement of formation is established.Comment: 34 pages, 6 figure

    Measures Matter: Scales for Adaptation, Cultural Distance, and Acculturation Orientation Revisited

    Get PDF
    Building upon existing measures, four new brief acculturation scales are presented, measuring sociocultural adaptation, psychological adaptation, perceived cultural distance, and acculturation orientation. Following good scale reliability in initial samples, the English scales were translated into nine different languages (Chinese, French, German, Italian, Japanese, Portuguese, Spanish, Thai, and Turkish). The translated scales were administered to a large sample of sojourners (N = 1,929), demonstrating good reliability and adequate structural equivalence across languages. In line with existing theory, sociocultural adaptation and psychological adaptation were positively correlated, and showed a negative association with perceived cultural distance. General measures of well-being were correlated with adaptation and distance, with better adaptation relating to higher well-being, and more distance relating to lower well-being. Acculturation orientation toward the home and host culture were measured separately and a weak negative correlation was found between the two, supporting their independence. Arguing against dichotomization, these subscales were analyzed as continuous variables. Regression analysis showed sojourners to be better adapted, if they were oriented more toward the host culture and less toward the home culture. These new scales are proposed as alternatives to existing measures

    On the migration of protogiant solid cores

    Full text link
    The increase of computational resources has recently allowed high resolution, three dimensional calculations of planets embedded in gaseous protoplanetary disks. They provide estimates of the planet migration timescale that can be compared to analytical predictions. While these predictions can result in extremely short migration timescales for cores of a few Earth masses, recent numerical calculations have given an unexpected outcome: the torque acting on planets with masses between 5 M_Earth and 20 M_Earth is considerably smaller than the analytic, linear estimate. These findings motivated the present work, which investigates existence and origin of this discrepancy or ``offset'', as we shall call it, by means of two and three dimensional numerical calculations. We show that the offset is indeed physical and arises from the coorbital corotation torque, since (i) it scales with the disk vortensity gradient, (ii) its asymptotic value depends on the disk viscosity, (iii) it is associated to an excess of the horseshoe zone width. We show that the offset corresponds to the onset of non-linearities of the flow around the planet, which alter the streamline topology as the planet mass increases: at low mass the flow non-linearities are confined to the planet's Bondi sphere whereas at larger mass the streamlines display a classical picture reminiscent of the restricted three body problem, with a prograde circumplanetary disk inside a ``Roche lobe''. This behavior is of particular importance for the sub-critical solid cores (M <~ 15 M_Earth) in thin (H/r <~0.06) protoplanetary disks. Their migration could be significantly slowed down, or reversed, in disks with shallow surface density profiles.Comment: Accepted for publication in Ap

    Levels of genetic polymorphism: marker loci versus quantitative traits

    Get PDF
    Species are the units used to measure ecological diversity and alleles are the units of genetic diversity. Genetic variation within and among species has been documented most extensively using allozyme electrophoresis. This reveals wide differences in genetic variability within, and genetic distances among, species, demonstrating that species are not equivalent units of diversity. The extent to which the pattern observed for allozymes can be used to infer patterns of genetic variation in quantitative traits depends on the forces generating and maintaining variability. Allozyme variation is probably not strictly neutral but, nevertheless, heterozygosity is expected to be influenced by population size and genetic distance will be affected by time since divergence. The same is true for quantitative traits influenced by many genes and under weak stabilizing selection. However, the limited data available suggest that allozyme variability is a poor predictor of genetic variation in quantitative traits within populations. It is a better predictor of general phenotypic divergence and of postzygotic isolation between populations or species, but is only weakly correlated with prezygotic isolation. Studies of grasshopper and planthopper mating signal variation and assortative mating illustrate how these characters evolve independently of general genetic and morphological variation. The role of such traits in prezygotic isolation, and hence speciation, means that they will contribute significantly to the diversity of levels of genetic variation within and among species

    Social recognition and social attraction in group-living fishes

    Get PDF
    This work was supported by a grant from the Australian Research Council, Discovery Project DP190100660, focusing on the social behavior of animals.Social aggregation is a widespread and important phenomenon among fishes. Understanding the questions of why and how aggregations form and are subsequently maintained is a central goal for behavioral ecologists. Research in this field has shown that aggregations are typically structured, non-random associations. This indicates that fish are able to differentiate between potential group-mates and that this ability mediates their association preferences, and, ultimately, the composition of their groups. In this review, we examine the characteristics that influence the expression of social attraction among fishes, before going on to describe the recognition mechanisms that underpin social attraction. Finally, we highlight a number of outstanding questions in the field with a view to generating a more complete understanding of social aggregation in fishes.Publisher PDFPeer reviewe

    (Super)twistors and (super)strings

    Full text link
    The Lagrangian formulation of the D=4 bosonic string and superstring in terms of the (super)twistors is considered. The (super)twistor form of the equations of motion is derived and the kappa-symmetry transformation for the supertwistors is given. It is shown that the covariant kappa-symmetry gauge fixation results in the action quadratic in the (super)twistor variables.Comment: LaTeX, 17 page
    corecore