24,197 research outputs found

    A study of planar Richtmyer-Meshkov instability in fluids with Mie-Grüneisen equations of state

    Get PDF
    We present a numerical comparison study of planar Richtmyer-Meshkov instability with the intention of exposing the role of the equation of state. Results for Richtmyer-Meshkov instability in fluids with Mie-Grüneisen equations of state derived from a linear shock-particle speed Hugoniot relationship (Jeanloz, J. Geophys. Res. 94, 5873, 1989; McQueen et al., High Velocity Impact Phenomena (1970), pp. 294–417; Menikoff and Plohr, Rev. Mod. Phys. 61(1), 75 1989) are compared to those from perfect gases under nondimensionally matched initial conditions at room temperature and pressure. The study was performed using Caltech’s Adaptive Mesh Refinement, Object-oriented C++ (AMROC) (Deiterding, Adaptive Mesh Refinement: Theory and Applications (2005), Vol. 41, pp. 361–372; Deiterding, “Parallel adaptive simulation of multi-dimensional detonation structures,” Ph.D. thesis (Brandenburgische Technische Universität Cottbus, September 2003)) framework with a low-dissipation, hybrid, center-difference, limiter patch solver (Ward and Pullin, J. Comput. Phys. 229, 2999 (2010)). Results for single and triple mode planar Richtmyer-Meshkov instability when a reflected shock wave occurs are first examined for mid-ocean ridge basalt (MORB) and molybdenum modeled by Mie-Grüneisen equations of state. The single mode case is examined for incident shock Mach numbers of 1.5 and 2.5. The planar triple mode case is studied using a single incident Mach number of 2.5 with initial corrugation wavenumbers related by k_1 = k_2+k_3. Comparison is then drawn to Richtmyer-Meshkov instability in perfect gases with matched nondimensional pressure jump across the incident shock, post-shock Atwood ratio, post-shock amplitude-to-wavelength ratio, and time nondimensionalized by Richtmyer’s linear growth time constant prediction. Differences in start-up time and growth rate oscillations are observed across equations of state. Growth rate oscillation frequency is seen to correlate directly to the oscillation frequency for the transmitted and reflected shocks. For the single mode cases, further comparison is given for vorticity distribution and corrugation centerline shortly after shock interaction. Additionally, we examine single mode Richtmyer-Meshkov instability when a reflected expansion wave is present for incident Mach numbers of 1.5 and 2.5. Comparison to perfect gas solutions in such cases yields a higher degree of similarity in start-up time and growth rate oscillations. The formation of incipient weak waves in the heavy fluid driven by waves emanating from the perturbed transmitted shock is observed when an expansion wave is reflected

    Automated precision alignment of optical components for hydroxide catalysis bonding

    Get PDF
    We describe an interferometric system that can measure the alignment and separation of a polished face of a optical component and an adjacent polished surface. Accuracies achieved are ∼ 1μrad for the relative angles in two orthogonal directions and ∼ 30μm in separation. We describe the use of this readout system to automate the process of hydroxide catalysis bonding of a fused-silica component to a fused-silica baseplate. The complete alignment and bonding sequence was typically achieved in a timescale of a few minutes, followed by an initial cure of 10 minutes. A series of bonds were performed using two fluids - a simple sodium hydroxide solution and a sodium hydroxide solution with some sodium silicate solution added. In each case we achieved final bonded component angular alignment within 10 μrad and position in the critical direction within 4 μm of the planned targets. The small movements of the component during the initial bonding and curing phases were monitored. The bonds made using the sodium silicate mixture achieved their final bonded alignment over a period of ∼ 15 hours. Bonds using the simple sodium hydroxide solution achieved their final alignment in a much shorter time of a few minutes. The automated system promises to speed the manufacture of precision-aligned assemblies using hydroxide catalysis bonding by more than an order of magnitude over the more manual approach used to build the optical interferometer at the heart of the recent ESA LISA Pathfinder technology demonstrator mission. This novel approach will be key to the time-efficient and low-risk manufacture of the complex optical systems needed for the forthcoming ESA spaceborne gravitational waves observatory mission, provisionally named LISA

    On The Orbital Evolution of Jupiter Mass Protoplanet Embedded in A Self-Gravity Disk

    Full text link
    We performed a series of hydro-dynamic simulations to investigate the orbital migration of a Jovian planet embedded in a proto-stellar disk. In order to take into account of the effect of the disk's self gravity, we developed and adopted an \textbf{Antares} code which is based on a 2-D Godunov scheme to obtain the exact Reimann solution for isothermal or polytropic gas, with non-reflecting boundary conditions. Our simulations indicate that in the study of the runaway (type III) migration, it is important to carry out a fully self consistent treatment of the gravitational interaction between the disk and the embedded planet. Through a series of convergence tests, we show that adequate numerical resolution, especially within the planet's Roche lobe, critically determines the outcome of the simulations. We consider a variety of initial conditions and show that isolated, non eccentric protoplanet planets do not undergo type III migration. We attribute the difference between our and previous simulations to the contribution of a self consistent representation of the disk's self gravity. Nevertheless, type III migration cannot be completely suppressed and its onset requires finite amplitude perturbations such as that induced by planet-planet interaction. We determine the radial extent of type III migration as a function of the disk's self gravity.Comment: 19 pages, 13 figure

    Evolution of Migrating Planets Undergoing Gas Accretion

    Full text link
    We analyze the orbital and mass evolution of planets that undergo run-away gas accretion by means of 2D and 3D hydrodynamic simulations. The disk torque distribution per unit disk mass as a function of radius provides an important diagnostic for the nature of the disk-planet interactions. We first consider torque distributions for nonmigrating planets of fixed mass and show that there is general agreement with the expectations of resonance theory. We then present results of simulations for mass-gaining, migrating planets. For planets with an initial mass of 5 Earth masses, which are embedded in disks with standard parameters and which undergo run-away gas accretion to one Jupiter mass (Mjup), the torque distributions per unit disk mass are largely unaffected by migration and accretion for a given planet mass. The migration rates for these planets are in agreement with the predictions of the standard theory for planet migration (Type I and Type II migration). The planet mass growth occurs through gas capture within the planet's Bondi radius at lower planet masses, the Hill radius at intermediate planet masses, and through reduced accretion at higher planet masses due to gap formation. During run-away mass growth, a planet migrates inwards by only about 20% in radius before achieving a mass of ~1 Mjup. For the above models, we find no evidence of fast migration driven by coorbital torques, known as Type III migration. We do find evidence of Type III migration for a fixed mass planet of Saturn's mass that is immersed in a cold and massive disk. In this case the planet migration is assumed to begin before gap formation completes. The migration is understood through a model in which the torque is due to an asymmetry in density between trapped gas on the leading side of the planet and ambient gas on the trailing side of the planet.Comment: 26 pages, 29 figures. To appear in The Astrophysical Journal vol.684 (September 20, 2008 issue

    Matrix Pencils and Entanglement Classification

    Full text link
    In this paper, we study pure state entanglement in systems of dimension 2mn2\otimes m\otimes n. Two states are considered equivalent if they can be reversibly converted from one to the other with a nonzero probability using only local quantum resources and classical communication (SLOCC). We introduce a connection between entanglement manipulations in these systems and the well-studied theory of matrix pencils. All previous attempts to study general SLOCC equivalence in such systems have relied on somewhat contrived techniques which fail to reveal the elegant structure of the problem that can be seen from the matrix pencil approach. Based on this method, we report the first polynomial-time algorithm for deciding when two 2mn2\otimes m\otimes n states are SLOCC equivalent. Besides recovering the previously known 26 distinct SLOCC equivalence classes in 23n2\otimes 3\otimes n systems, we also determine the hierarchy between these classes

    Construction of rugged, ultrastable optical assemblies with optical component alignment at the few microradian level

    Get PDF
    A method for constructing quasimonolithic, precision-aligned optical assemblies is presented. Hydroxide-catalysis bonding is used, adapted to allow optimization of component fine alignment prior to the bond setting. We demonstrate the technique by bonding a fused silica mirror substrate to a fused silica baseplate. In-plane component placement at the submicrometer level is achieved, resulting in angular control of a reflected laser beam at the sub-10-μrad level. Within the context of the LISA Pathfinder mission, the technique has been demonstrated as suitable for use in space-flight applications. It is expected that there will also be applications in a wide range of areas where accuracy, stability, and strength of optical assemblies are important

    Cultural Resources Investigations of the Vista Ridge Regional Water Supply Project in Burleson, Lee, Bastrop, Caldwell, Guadalupe, Comal and Bexar Counties, Texas

    Get PDF
    On behalf of VRRSP Consultants, LLC and Central Texas Regional Water Supply Corporation (CTRWSC), SWCA Environmental Consultants (SWCA) conducted cultural resources investigations of the Vista Ridge Regional Water Supply (Vista Ridge) Project in Burleson, Lee, Bastrop, Caldwell, Guadalupe, Comal, and Bexar Counties. The work will involve installation of a 139.45-mile-long, 60-inch-diameter water pipeline from northcentral San Antonio, Bexar County, Texas, to Deanville, Burleson County, Texas. The report details the findings of investigations from June 2015 to December 2015, on the alignment dated December 8, 2015 (December 8th). The Vista Ridge Project is subject to review under Section 106 of the National Historic Preservation Act (54 USC 306108) and its implementing regulations (36 CFR 800), in anticipation of a Nationwide Permit 12 from the U.S. Army Corps of Engineers in accordance with Section 404 of the Clean Water Act. In addition, the work is subject to compliance with the Antiquities Code of Texas under Permit Number 7295, as the Vista Ridge Project will be ultimately owned by a political subdivision of the State of Texas. The cultural resources investigations included a background review and intensive field survey. The background review identified previous investigations, recorded archaeological sites, National Register of Historic Places (NRHP) properties, cemeteries, standing structures, and other known cultural resources within a 0.50-mile radius of the project area. The field investigations conducted from June 2015 through December 2015 assessed all accessible portions of the proposed December 8th alignment as of December 25, 2015. Approximately 101.8 miles of the 139.45-mile alignment has been surveyed. Approximately 24.42 miles were not surveyed based on the results of the background review and extensive disturbances as confirmed by vehicular survey. The remaining 13.23 miles that require survey were either unavailable due to landowner restrictions or part of a newly adopted reroute. SWCA also surveyed additional mileage, which includes rerouted areas that are no longer part of the December 8th alignment. The inventory identified 59 cultural resources, including 52 archaeological sites and seven isolated finds. In addition to newly recorded resources, two previously recorded archaeological sites were revisited, and two cemeteries were documented. Of the 52 newly recorded archaeological sites, seven are recommended for further work or avoidance. Of the two revisited archeological sites, one is recommended for further work or avoidance within the project area. Avoidance is recommended for both documented cemeteries. The resources with undetermined eligibility require additional testing or other avenues of research before SWCA can make a firm recommendation about their eligibility for nomination to the NRHP and designation as State Antiquities Landmarks (SALs). As part of a management strategy, the resources with undetermined eligibility may also be avoided by reroute or boring beneath. The remaining 45 cultural resources are recommended not eligible for inclusion to the NRHP or for designation as SALs and no further cultural resources investigations or avoidance strategies are recommended
    corecore