624 research outputs found

    On the Timescale for the Formation of Protostellar Cores in Magnetic Interstellar Clouds

    Get PDF
    We revisit the problem of the formation of dense protostellar cores due to ambipolar diffusion within magnetically supported molecular clouds, and derive an analytical expression for the core formation timescale. The resulting expression is similar to the canonical expression = t_{ff}^2/t_{ni} ~ 10 t_{ni} (where t_{ff} is the free-fall time and t_{ni} is the neutral-ion collision time), except that it is multiplied by a numerical factor C(\mu_{c0}), where \mu_{c0} is the initial central mass-to-flux ratio normalized to the critical value for gravitational collapse. C(\mu_{c0}) is typically ~ 1 in highly subcritical clouds (\mu_{c0} << 1), although certain conditions allow C(\mu_{c0}) >> 1. For clouds that are not highly subcritical, C(\mu_{c0}) can be much less than unity, with C(\mu_{c0}) --> 0 for \mu_{c0} --> 1, significantly reducing the time required to form a supercritical core. This, along with recent observations of clouds with mass-to-flux ratios close to the critical value, may reconcile the results of ambipolar diffusion models with statistical analyses of cores and YSO's which suggest an evolutionary timescale \~ 1 Myr for objects of mean density ~ 10^4 cm^{-3}. We compare our analytical relation to the results of numerical simulations, and also discuss the effects of dust grains on the core formation timescale.Comment: 11 pages, 2 figures, accepted for publication in the Astrophysical Journa

    Sexual Assault Campus Climate Surveys: Insights from the First Wave

    Get PDF
    One tool to help institutions of higher education (IHEs) to address campus sexual assault is the campus climate survey (CCS); yet little is known about the CCS implementation process. This study used a mixed methods approach to examine the implementation process of CCSs deployed during the 2015/16 academic year at 244 IHEs throughout the United States. Quantitative results indicate CCSs were designed primarily by the Title IX officer and campus administration; assessed victimization rates and knowledge about campus resources; and were voluntary. Qualitative findings generate concerns surrounding generalizability, participation rates, validity of data, and suggestions for improvement for future CCSs

    From transcriptome to biological function: environmental stress in an ectothermic vertebrate, the coral reef fish Pomacentrus moluccensis

    Get PDF
    BackgroundOur understanding of the importance of transcriptional regulation for biological function is continuously improving. We still know, however, comparatively little about how environmentally induced stress affects gene expression in vertebrates, and the consistency of transcriptional stress responses to different types of environmental stress. In this study, we used a multi-stressor approach to identify components of a common stress response as well as components unique to different types of environmental stress. We exposed individuals of the coral reef fish Pomacentrus moluccensis to hypoxic, hyposmotic, cold and heat shock and measured the responses of approximately 16,000 genes in liver. We also compared winter and summer responses to heat shock to examine the capacity for such responses to vary with acclimation to different ambient temperatures.ResultsWe identified a series of gene functions that were involved in all stress responses examined here, suggesting some common effects of stress on biological function. These common responses were achieved by the regulation of largely independent sets of genes; the responses of individual genes varied greatly across different stress types. In response to heat exposure over five days, a total of 324 gene loci were differentially expressed. Many heat-responsive genes had functions associated with protein turnover, metabolism, and the response to oxidative stress. We were also able to identify groups of co-regulated genes, the genes within which shared similar functions.ConclusionThis is the first environmental genomic study to measure gene regulation in response to different environmental stressors in a natural population of a warm-adapted ectothermic vertebrate. We have shown that different types of environmental stress induce expression changes in genes with similar gene functions, but that the responses of individual genes vary between stress types. The functions of heat-responsive genes suggest that prolonged heat exposure leads to oxidative stress and protein damage, a challenge of the immune system, and the re-allocation of energy sources. This study hence offers insight into the effects of environmental stress on biological function and sheds light on the expected sensitivity of coral reef fishes to elevated temperatures in the future

    Graphene formation on SiC substrates

    Full text link
    Graphene layers were created on both C and Si faces of semi-insulating, on-axis, 4H- and 6H-SiC substrates. The process was performed under high vacuum (<10-4 mbar) in a commercial chemical vapor deposition SiC reactor. A method for H2 etching the on-axis sub-strates was developed to produce surface steps with heights of 0.5 nm on the Si-face and 1.0 to 1.5 nm on the C-face for each polytype. A process was developed to form graphene on the substrates immediately after H2 etching and Raman spectroscopy of these samples confirmed the formation of graphene. The morphology of the graphene is described. For both faces, the underlying substrate morphology was significantly modified during graphene formation; sur-face steps were up to 15 nm high and the uniform step morphology was sometimes lost. Mo-bilities and sheet carrier concentrations derived from Hall Effect measurements on large area (16 mm square) and small area (2 and 10 um square) samples are presented and shown to compare favorably to recent reports.Comment: European Conference on Silicon Carbide and Related Materials 2008 (ECSCRM '08), 4 pages, 4 figure

    Hyperfine Magnetic Field Measurement in Heusler Alloys by TDPAC Technique

    Get PDF
    This work was supported by National Science Foundation Grants PHY 76-84033A01, PHY 78-22774, and Indiana Universit

    Does the Debris Disk around HD 32297 Contain Cometary Grains?

    Full text link
    We present an adaptive optics imaging detection of the HD 32297 debris disk at L' (3.8 \microns) obtained with the LBTI/LMIRcam infrared instrument at the LBT. The disk is detected at signal-to-noise per resolution element ~ 3-7.5 from ~ 0.3-1.1" (30-120 AU). The disk at L' is bowed, as was seen at shorter wavelengths. This likely indicates the disk is not perfectly edge-on and contains highly forward scattering grains. Interior to ~ 50 AU, the surface brightness at L' rises sharply on both sides of the disk, which was also previously seen at Ks band. This evidence together points to the disk containing a second inner component located at ≲\lesssim 50 AU. Comparing the color of the outer (50 <r< r/AU <120< 120) portion of the disk at L' with archival HST/NICMOS images of the disk at 1-2 \microns allows us to test the recently proposed cometary grains model of Donaldson et al. 2013. We find that the model fails to match the disk's surface brightness and spectrum simultaneously (reduced chi-square = 17.9). When we modify the density distribution of the model disk, we obtain a better overall fit (reduced chi-square = 2.9). The best fit to all of the data is a pure water ice model (reduced chi-square = 1.06), but additional resolved imaging at 3.1 \microns is necessary to constrain how much (if any) water ice exists in the disk, which can then help refine the originally proposed cometary grains model.Comment: Accepted to ApJ January 13, 2014. 12 pages (emulateapj style), 9 figures, 1 tabl

    A Census of the High-Density Molecular Gas in M82

    Full text link
    We present a three-pointing study of the molecular gas in the starburst nucleus of M82 based on 190 - 307 GHz spectra obtained with Z-Spec at the Caltech Submillimeter Observatory. We present intensity measurements, detections and upper limits, for 20 transitions, including several new detections of CS, HNC, C2H, H2CO, and CH3CCH lines. We combine our measurements with previously-published measurements at other frequencies for HCN, HNC, CS, C34S, and HCO+ in a multi-species likelihood analysis constraining gas mass, density and temperature, and the species' relative abundances. We find some 1.7 - 2.7 x 10^8 M_sun of gas with n_H2 between 1 - 6 x 10^4 cm^-3 and T > 50 K. While the mass and temperature are comparable to values inferred from mid-J CO transitions, the thermal pressure is a factor of 10 - 20 greater. The molecular interstellar medium is largely fragmented and is subject to ultraviolet irradiation from the star clusters. It is also likely subject to cosmic rays and mechanical energy input from the supernovae, and is warmer on average than the molecular gas in the massive star formation regions in the Milky Way. The typical conditions in the dense gas in M82's central kpc appear unfavorable for further star formation; if any appreciable stellar populations are currently forming, they are likely biased against low mass stars, producing a top-heavy initial mass function.Comment: 15 pages (using emulateapj.cls), 6 figures, Astrophysical Journal, in pres

    Improvement of Morphology and Free Carrier Mobility through Argon-Assisted Growth of Epitaxial Graphene on Silicon Carbide

    Full text link
    Graphene was epitaxially grown on both the C- and Si-faces of 4H- and 6H-SiC(0001) under an argon atmosphere and under high vacuum conditions. Following growth, samples were imaged with Nomarski interference contrast and atomic force microscopies and it was found that growth under argon led to improved morphologies on the C-face films but the Si-face films were not significantly affected. Free carrier transport studies were conducted through Hall effect measurements, and carrier mobilities were found to increase and sheet carrier densities were found to decrease for those films grown under argon as compared to high vacuum conditions. The improved mobilities and concurrent decreases in sheet carrier densities suggest a decrease in scattering in the films grown under argon.Comment: 215th Meeting of the Electrochemical Society (ECS 215), 14 pages, 6 figure

    Hall Effect Mobility of Epitaxial Graphene Grown on Silicon Carbide

    Full text link
    Epitaxial graphene films were grown in vacuo by silicon sublimation from the (0001) and (000-1) faces of 4H- and 6H-SiC. Hall effect mobilities and sheet carrier densities of the films were measured at 300 K and 77 K and the data depended on the growth face. About 40% of the samples exhibited holes as the dominant carrier, independent of face. Generally, mobilities increased with decreasing carrier density, independent of carrier type and substrate polytype. The contributions of scattering mechanisms to the conductivities of the films are discussed. The results suggest that for near-intrinsic carrier densities at 300 K epitaxial graphene mobilities will be ~150,000 cm2V-1s-1 on the (000-1) face and ~5,800 cm2V-1s-1 on the (0001) face.Comment: Accepted for publication in Applied Physics Letters, 10 pages, 2 figure
    • …
    corecore