8 research outputs found

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases

    Cancer-Related Genetic Testing and Personalized Medicine for Adolescents: A narrative review of impact and understanding

    No full text
    Genetic testing is becoming increasingly available for adolescents who are undergoing cancer treatment or at risk of cancer predisposition syndromes. With this narrative review, we aimed to synthesize the evidence on psychosocial outcomes and adolescents' understanding of genetic testing-thus far, an underresearched topic. Both psychological benefits and harms of predictive testing were reported in adolescents from high-risk families. Harms were mainly related to cancer-specific distress and increased worries. Findings on genetic understanding were sparse. Future studies should focus on psychosocial outcomes and adolescents' understanding undergoing genetic testing and enabling access to genetic counseling pre-testing and post-testing

    “Balancing Expectations with Actual Realities”: Conversations with Clinicians and Scientists in the First Year of a High-Risk Childhood Cancer Precision Medicine Trial

    Get PDF
    Precision medicine is changing cancer care and placing new demands on oncology professionals. Precision medicine trials for high-risk childhood cancer exemplify these complexities. We assessed clinicians&rsquo; (<i>n</i> = 39) and scientists&rsquo; (<i>n</i><i> </i>= 15) experiences in the first year of the PRecISion Medicine for Children with Cancer (PRISM) trial for children and adolescents with high-risk cancers, through an in-depth semi-structured interview. We thematically analysed participants&rsquo; responses regarding their professional challenges, and measured oncologists&rsquo; knowledge of genetics and confidence with somatic and germline molecular test results. Both groups described positive early experiences with PRISM but were cognisant of managing parents&rsquo; expectations. Key challenges for clinicians included understanding and communicating genomic results, balancing biopsy risks, and drug access. Most oncologists rated &lsquo;good&rsquo; knowledge of genetics, but a minority were &lsquo;very confident&rsquo; in interpreting (25%), explaining (34.4%) and making treatment recommendations (18.8%) based on somatic genetic test results. Challenges for scientists included greater emotional impact of their work and balancing translational outputs with academic productivity. Continued tracking of these challenges across the course of the trial, while assessing the perspectives of a wider range of stakeholders, is critical to drive the ongoing development of a workforce equipped to manage the demands of paediatric precision medicine

    What&rsquo;s in a Name? Parents&rsquo; and Healthcare Professionals&rsquo; Preferred Terminology for Pathogenic Variants in Childhood Cancer Predisposition Genes

    No full text
    Current literature/guidelines regarding the most appropriate term to communicate a cancer-related disease-causing germline variant in childhood cancer lack consensus. Guidelines also rarely address preferences of patients/families. We aimed to assess preferences of parents of children with cancer, genetics professionals, and pediatric oncologists towards terminology to describe a disease-causing germline variant in childhood cancer. Using semi-structured interviews we asked participants their most/least preferred terms from; &lsquo;faulty gene,&rsquo; &lsquo;altered gene,&rsquo; &lsquo;gene change,&rsquo; and &lsquo;genetic variant,&rsquo; analyzing responses with directed content analysis. Twenty-five parents, 6 genetics professionals, and 29 oncologists participated. An equal number of parents most preferred &lsquo;gene change,&rsquo; &lsquo;altered gene,&rsquo; or &lsquo;genetic variant&rsquo; (n = 8/25). Parents least preferred &lsquo;faulty gene&rsquo; (n = 18/25). Half the genetics professionals most preferred &lsquo;faulty gene&rsquo; (n = 3/6); however this was least preferred by the remaining genetics professionals (n = 3/6). Many oncologists most preferred &lsquo;genetic variant&rsquo; (n = 11/29) and least preferred &lsquo;faulty gene&rsquo; (n = 19/29). Participants across all groups perceived &lsquo;faulty gene&rsquo; as having negative connotations, potentially placing blame/guilt on parents/children. Health professionals described challenges selecting a term that was scientifically accurate, easily understood and not distressing to families. Lack of consensus highlights the need to be guided by families&rsquo; preferred terminology, while providing accurate explanations regarding implications of genetic findings

    Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer

    No full text
    The Zero Childhood Cancer Program is a precision medicine program to benefit children with poor-outcome, rare, relapsed or refractory cancer. Using tumor and germline whole genome sequencing (WGS) and RNA sequencing (RNAseq) across 252 tumors from high-risk pediatric patients with cancer, we identified 968 reportable molecular aberrations (39.9% in WGS and RNAseq, 35.1% in WGS only and 25.0% in RNAseq only). Of these patients, 93.7% had at least one germline or somatic aberration, 71.4% had therapeutic targets and 5.2% had a change in diagnosis. WGS identified pathogenic cancer-predisposing variants in 16.2% of patients. In 76 central nervous system tumors, methylome analysis confirmed diagnosis in 71.1% of patients and contributed to a change of diagnosis in two patients (2.6%). To date, 43 patients have received a recommended therapy, 38 of whom could be evaluated, with 31% showing objective evidence of clinical benefit. Comprehensive molecular profiling resolved the molecular basis of virtually all high-risk cancers, leading to clinical benefit in some patients

    Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer

    No full text
    The Zero Childhood Cancer Program is a precision medicine program to benefit children with poor-outcome, rare, relapsed or refractory cancer. Using tumor and germline whole genome sequencing (WGS) and RNA sequencing (RNAseq) across 252 tumors from high-risk pediatric patients with cancer, we identified 968 reportable molecular aberrations (39.9% in WGS and RNAseq, 35.1% in WGS only and 25.0% in RNAseq only). Of these patients, 93.7% had at least one germline or somatic aberration, 71.4% had therapeutic targets and 5.2% had a change in diagnosis. WGS identified pathogenic cancer-predisposing variants in 16.2% of patients. In 76 central nervous system tumors, methylome analysis confirmed diagnosis in 71.1% of patients and contributed to a change of diagnosis in two patients (2.6%). To date, 43 patients have received a recommended therapy, 38 of whom could be evaluated, with 31% showing objective evidence of clinical benefit. Comprehensive molecular profiling resolved the molecular basis of virtually all high-risk cancers, leading to clinical benefit in some patients.</p

    In vitro and in vivo drug screens of tumor cells identify novel therapies for high‐risk child cancer

    No full text
    Abstract Biomarkers which better match anticancer drugs with cancer driver genes hold the promise of improved clinical responses and cure rates. We developed a precision medicine platform of rapid high‐throughput drug screening (HTS) and patient‐derived xenografting (PDX) of primary tumor tissue, and evaluated its potential for treatment identification among 56 consecutively enrolled high‐risk pediatric cancer patients, compared with conventional molecular genomics and transcriptomics. Drug hits were seen in the majority of HTS and PDX screens, which identified therapeutic options for 10 patients for whom no targetable molecular lesions could be found. Screens also provided orthogonal proof of drug efficacy suggested by molecular analyses and negative results for some molecular findings. We identified treatment options across the whole testing platform for 70% of patients. Only molecular therapeutic recommendations were provided to treating oncologists and led to a change in therapy in 53% of patients, of whom 29% had clinical benefit. These data indicate that in vitro and in vivo drug screening of tumor cells could increase therapeutic options and improve clinical outcomes for high‐risk pediatric cancer patients

    Performance of the McGill Interactive Pediatric OncoGenetic Guidelines for Identifying Cancer Predisposition Syndromes.

    No full text
    Importance Prompt recognition of a child with a cancer predisposition syndrome (CPS) has implications for cancer management, surveillance, genetic counseling, and cascade testing of relatives. Diagnosis of CPS requires practitioner expertise, access to genetic testing, and test result interpretation. This diagnostic process is not accessible in all institutions worldwide, leading to missed CPS diagnoses. Advances in electronic health technology can facilitate CPS risk assessment. Objective To evaluate the diagnostic accuracy of a CPS prediction tool (McGill Interactive Pediatric OncoGenetic Guidelines [MIPOGG]) in identifying children with cancer who have a low or high likelihood of having a CPS. Design, Setting, and Participants In this international, multicenter diagnostic accuracy study, 1071 pediatric (<19 years of age) oncology patients who had a confirmed CPS (12 oncology referral centers) or who underwent germline DNA sequencing through precision medicine programs (6 centers) from January 1, 2000, to July 31, 2020, were studied. Exposures Exposures were MIPOGG application in patients with cancer and a confirmed CPS (diagnosed through routine clinical care; n = 413) in phase 1 and MIPOGG application in patients with cancer who underwent germline DNA sequencing (n = 658) in phase 2. Study phases did not overlap. Data analysts were blinded to genetic test results. Main Outcomes and Measures The performance of MIPOGG in CPS recognition was compared with that of routine clinical care, including identifying a CPS earlier than practitioners. The tool's test characteristics were calculated using next-generation germline DNA sequencing as the comparator. Results In phase 1, a total of 413 patients with cancer (median age, 3.0 years; range, 0-18 years) and a confirmed CPS were identified. MIPOGG correctly recognized 410 of 412 patients (99.5%) as requiring referral for CPS evaluation at the time of primary cancer diagnosis. Nine patients diagnosed with a CPS by a practitioner after their second malignant tumor were detected by MIPOGG using information available at the time of the first cancer. In phase 2, of 658 children with cancer (median age, 6.6 years; range, 0-18.8 years) who underwent comprehensive germline DNA sequencing, 636 had sufficient information for MIPOGG application. When compared with germline DNA sequencing for CPS detection, the MIPOGG test characteristics for pediatric-onset CPSs were as follows: sensitivity, 90.7%; specificity, 60.5%; positive predictive value, 17.6%; and negative predictive value, 98.6%. Tumor DNA sequencing data confirmed the MIPOGG recommendation for CPS evaluation in 20 of 22 patients with established cancer-CPS associations. Conclusions and Relevance In this diagnostic study, MIPOGG exhibited a favorable accuracy profile for CPS screening and reduced time to CPS recognition. These findings suggest that MIPOGG implementation could standardize and rationalize recommendations for CPS evaluation in children with cancer
    corecore