7,831 research outputs found
Recommended from our members
Local people's knowledge in natural resources research
Innovation and knowledge about natural resources come from many different sources; application of new knowledge does not occur in a vacuum but has to be incorporated into specific social and ecological contexts. Farmers have been developing agricultural systems, domesticating animals, breeding new crop varieties and constructing irrigation systems throughout the centuries without the aid of formalised scientific approaches and agricultural extension systen1s. In order to develop sustainable strategies it is important to take account of, and learn from, what local people already know and do, and to build on this.
A variety of terms have been used in the development literature to refer to the collective knowledge of local people: indigenous knowledge, indigenous technical knowledge, 'traditional' knowledge and rural people's knowledge. The term 'local people's knowledge' (LPK) is used here to include local knowledge of people in both rural and peri-urban and urban communities who use natural resources in some way. This includes farmers - and those with other occupations, such as pastoralists, foresters, hunters and gatherers - fisherfolk, artisans, food processors and traders. Although many are likely to be poor, relatively powerless and marginalized, local knowledge is also held by those in Government and the private sector
A New Schedule Estimation Technique for Construction Projects
Allen studied hundreds of construction projects and developed an accu-rate, practically useful model of their labor profiles. We combine Al-len’s labor profile with standard Earned Value Management (EVM) techniques and derive a simple, practical formula that estimates the fi-nal schedule from early project data. The schedule estimation formula is exact; it requires no approximations. The estimate is also surprisingly accurate and available early enough in the project for the project manager to be able to take appropriate actions. We use one of Allen’s real-world construction data sets to calibrate and validate our theoreti-cal model. Early estimates of the final schedule are remarkably accu-rate, and available early enough to be used to effect management changes. We also explain why a current schedule estimation method, Earned Schedule (ES), has a poor theoretical foundation and show that our model is superior to ES in predicting construction schedule delays. The model should provide warning of schedule delays early enough for project managers to take corrective actions
GHz bandwidth electro-optics of a single self-assembled quantum dot in a charge-tunable device
The response of a single InGaAs quantum dot, embedded in a miniaturized
charge-tunable device, to an applied GHz bandwidth electrical pulse is
investigated via its optical response. Quantum dot response times of 1.0 \pm
0.1 ns are characterized via several different measurement techniques,
demonstrating GHz bandwidth electrical control. Furthermore a novel optical
detection technique based on resonant electron-hole pair generation in the
hybridization region is used to map fully the voltage pulse experienced by the
quantum dot, showing in this case a simple exponential rise.Comment: 7 pages, 4 figure
Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: A trait-based predictive framework
Anthropogenic nitrogen (N) deposition is exposing plants and their arbuscular mycorrhizal fungi (AMFs) to elevated N availability, often leading to shifts in communities of AMF. However, physiological trade-offs among AMF taxa in their response to N enrichment vs the ability to acquire other soil nutrients could have negative effects on plant and ecosystem productivity. It follows that information on the functional traits of AMF taxa can be used to generate predictions of their potential role in mediating ecosystem responses to N enrichment. Arbuscular mycorrhizal fungi taxa that produce extensive networks of external hyphae should forage for N and phosphorus (P) more effectively, but these services incur greater carbon (C) costs to the plant. If N enrichment ameliorates plant nutrient limitation, then plants may reduce C available for AMF, which in turn could eliminate AMF taxa with large extensive external hyphae from the soil community. As a result, the remaining AMF taxa may confer less P benefit to their host plants. Using a synthesis of data from the literature, we found that the ability of a taxon to persist in the face of increasing soil N availability was particularly high in isolates from the genus Glomus, but especially low among the Gigasporaceae. Across AMF genera, our data support the prediction that AMF with a tolerance for high soil N may confer a lower P benefit to their host plant. Relationships between high N tolerance and production of external hyphae were mixed. Synthesis. If the relationship between N tolerance and plant P benefit is widespread, then shifts in arbuscular mycorrhizal fungi communities associated with N deposition could have negative consequences for the ability of plants to acquire P and possibly other nutrients via a mycorrhizal pathway. Based on this relationship, we predict that arbuscular mycorrhizal fungi responses could constrain net primary productivity in P-limited ecosystems exposed to N enrichment. This prediction could be tested in future empirical and modelling studies
Transform-limited single photons from a single quantum dot
A semiconductor quantum dot mimics a two-level atom. Performance as a single
photon source is limited by decoherence and dephasing of the optical
transition. Even with high quality material at low temperature, the optical
linewidths are a factor of two larger than the transform-limit. A major
contributor to the inhomogeneous linewdith is the nuclear spin noise. We show
here that the nuclear spin noise depends on optical excitation, increasing
(decreasing) with increasing resonant laser power for the neutral (charged)
exciton. Based on this observation, we discover regimes where we demonstrate
transform-limited linewidths on both neutral and charged excitons even when the
measurement is performed very slowly
Electrically-tunable hole g-factor of an optically-active quantum dot for fast spin rotations
We report a large g-factor tunability of a single hole spin in an InGaAs
quantum dot via an electric field. The magnetic field lies in the in-plane
direction x, the direction required for a coherent hole spin. The electrical
field lies along the growth direction z and is changed over a large range, 100
kV/cm. Both electron and hole g-factors are determined by high resolution laser
spectroscopy with resonance fluorescence detection. This, along with the low
electrical-noise environment, gives very high quality experimental results. The
hole g-factor g_xh depends linearly on the electric field Fz, dg_xh/dFz = (8.3
+/- 1.2)* 10^-4 cm/kV, whereas the electron g-factor g_xe is independent of
electric field, dg_xe/dFz = (0.1 +/- 0.3)* 10^-4 cm/kV (results averaged over a
number of quantum dots). The dependence of g_xh on Fz is well reproduced by a
4x4 k.p model demonstrating that the electric field sensitivity arises from a
combination of soft hole confining potential, an In concentration gradient and
a strong dependence of material parameters on In concentration. The electric
field sensitivity of the hole spin can be exploited for electrically-driven
hole spin rotations via the g-tensor modulation technique and based on these
results, a hole spin coupling as large as ~ 1 GHz is expected to be envisaged.Comment: 8 pages, 4 figure
- …