8 research outputs found

    CMTCN: a web tool for investigating cancer-specific microRNA and transcription factor co-regulatory networks

    Get PDF
    Transcription factors (TFs) and microRNAs (miRNAs) are well-characterized trans-acting essential players in gene expression regulation. Growing evidence indicates that TFs and miRNAs can work cooperatively, and their dysregulation has been associated with many diseases including cancer. A unified picture of regulatory interactions of these regulators and their joint target genes would shed light on cancer studies. Although online resources developed to support probing of TF-gene and miRNA-gene interactions are available, online applications for miRNA-TF co-regulatory analysis, especially with a focus on cancers, are lacking. In light of this, we developed a web tool, namely CMTCN (freely available at http://www.cbportal.org/CMTCN), which constructs miRNA-TF co-regulatory networks and conducts comprehensive analyses within the context of particular cancer types. With its user-friendly provision of topological and functional analyses, CMTCN promises to be a reliable and indispensable web tool for biomedical studies

    Chemical Constituents from the Wild Atractylodes macrocephala Koidz and Acetylcholinesterase Inhibitory Activity Evaluation as Well as Molecular Docking Study

    No full text
    Screening the lead compounds which could interact both with PAS and CAS of acetylcholinesterase (AChE) is an important trend in finding innovative drugs for Alzheimer’s disease (AD). In this paper, four sesquiterpenes, i.e., atractylenolide III (1), atractylenolide IV (2), 3-acetyl-atractylon (3) and β-eudesmol (4), were obtained from the wild Atractylode macrocephala grown in Qimen for the first time. Their structures were elucidated mainly by NMR spectroscopy. To screen the potential dual site inhibitors of AChE, the compounds 1, 2, 3, as well as a novel and rare bisesquiterpenoid lactone, biatractylenolide II (5), which was also obtained from the tilted plant in our previous investigation, were evaluated their AChE inhibitory activities by using Ellman’s colorimetric method. The results showed that biatractylenolide II displayed moderate inhibitory activity (IC50 = 19.61 ± 1.11 μg/mL) on AChE. A further molecular docking study revealed that biatractylenolide II can interact with both the peripheral anionic site (PAS) and the catalytic active site (CAS) of AChE. These data suggest that biatractylenolide II can be considered a new lead compound to research and develop more potential dual site inhibitors of AChE

    Carbon Emission Reduction Evaluation of End-of-Life Buildings Based on Multiple Recycling Strategies

    No full text
    With the promotion of sustainability in the buildings and construction sector, the carbon saving strategies for the end-of-life (EoL) phase have been receiving increasing attention. In this research, life cycle assessment (LCA) theory was employed to study and compare the carbon savings benefits of three different management strategies (i.e., recycling, remanufacturing, and reuse) on the EoL phase of various buildings (including residential, office, commercial, and school buildings). Moreover, the carbon savings potential (CSP) was calculated and analyzed, which is defined as the percentage of the actual carbon savings to the sum of the total embodied carbon of the building. Results show that compared with traditional demolition and landfill treatment, the implementation of integrated management strategies for residential, office, commercial, and school buildings can reduce carbon emissions by 193.5–526.4 kgCO2-e/m2. Among the building materials, steel bar, structural steel, and concrete account for the major proportion of the total carbon savings of buildings (81.5–93.2%). The sequence of the CSPs for the four types of buildings, in descending order, is school, residential, commercial, and office buildings. A building with a life span of 50 years has the greatest CSP. The results of the study can be used to reduce environmental impacts, and have broad positive implications in terms of sustainable construction

    Carbon Emission Evaluation of Recycled Fine Aggregate Concrete Based on Life Cycle Assessment

    No full text
    This study conducts a life cycle assessment (LCA) of carbon emissions for recycled fine aggregate (RFA) concrete. There were six stages involved in the life cycle of RFA, including raw material extraction and processing, transportation to the manufacture, RFA concrete manufacturing, transportation to the building site, construction, and de-construction or demolition. The carbon uptake effect, due to the carbonation of RFA concrete, was also considered. The concept of “carbon-strength ratio” was introduced to comprehensively evaluate the carbon emission of RFA with different strengths. Sensitivity analysis was performed on the key parameters, including the water-to-cement ratio, RFA replacement ratio, and transportation distance, by employing three sensitivity coefficients. The results show that, under a certain water-to-cement ratio, the increase in RFA replacement ratio would decrease the carbon emission but increase the carbon-strength ratio. The higher the replacement ratio of RFA, the more sensitive the carbon emission of RFA concrete is to the change in transportation distance. Under a certain 28-day cubic compressive strength, the higher the RFA replacement ratio, the higher the carbon emission. The sensitivity analysis demonstrates that the carbon emission was the most sensitive to the water-to-cement ratio, which was followed by the RFA replacement ratio and transportation distance

    Carbon-saving benefits of various end-of-life strategies for different types of building structures

    No full text
    Against the backdrop of advocating for ultra-low energy consumption buildings both domestically and internationally, much attention has been attracted to energy consumption and carbon emissions at the end-of-life (EoL) stage from the whole life cycle of buildings. Recycling of construction and demolition wastes (C&DW) is an inevitable step in achieving the goals of ultra-low energy consumption and “carbon neutrality.” In this paper, the life cycle assessment (LCA) theory was employed to study the carbon-saving benefits of four different EoL strategies (i.e., recycling, remanufacturing, reuse, and the integrated strategy) for various building structures (including frame, frame shear wall, shear wall, and light steel structures), in which the carbon-saving potential (CSP) was served as the evaluation index. The results show that compared with the traditional demolition and landfill disposal methods, the implementation of integrated management strategies for structural buildings in this study can reduce carbon emissions by 150.7–246.8 kgCO2-e/m2, with the carbon-savings of 11.9–34.8 times the carbon emissions generated by the abandoned landfill. Among the four structures, the light steel structure has the greatest CSP, reaching (73.75–77.24%), followed by the frame shear wall structure (42.67–46.93%), the frame structure (41.19–45.11%), and the shear wall structure (39.00–43.79%). When the building life span is 50 years, all CSPs of the four structural buildings significantly increased, at this point, deconstruction of the building is the most reasonable approach

    Carbon Emission Evaluation of Recycled Fine Aggregate Concrete Based on Life Cycle Assessment

    No full text
    This study conducts a life cycle assessment (LCA) of carbon emissions for recycled fine aggregate (RFA) concrete. There were six stages involved in the life cycle of RFA, including raw material extraction and processing, transportation to the manufacture, RFA concrete manufacturing, transportation to the building site, construction, and de-construction or demolition. The carbon uptake effect, due to the carbonation of RFA concrete, was also considered. The concept of “carbon-strength ratio” was introduced to comprehensively evaluate the carbon emission of RFA with different strengths. Sensitivity analysis was performed on the key parameters, including the water-to-cement ratio, RFA replacement ratio, and transportation distance, by employing three sensitivity coefficients. The results show that, under a certain water-to-cement ratio, the increase in RFA replacement ratio would decrease the carbon emission but increase the carbon-strength ratio. The higher the replacement ratio of RFA, the more sensitive the carbon emission of RFA concrete is to the change in transportation distance. Under a certain 28-day cubic compressive strength, the higher the RFA replacement ratio, the higher the carbon emission. The sensitivity analysis demonstrates that the carbon emission was the most sensitive to the water-to-cement ratio, which was followed by the RFA replacement ratio and transportation distance
    corecore