29 research outputs found

    Enhanced effect of microdystrophin gene transfection by HSV-VP22 mediated intercellular protein transport

    Get PDF
    Background: Duchenne musclar dystrophy (DMD) is an X-linked recessive disease caused by mutations of dystrophin gene, there is no effective treatment for this disorder at present. Plasmidmediated gene therapy is a promising therapeutical approach for the treatment of DMD. One of the major issues with plasmid-mediated gene therapy for DMD is poor transfection efficiency and distribution. The herpes simplex virus protein VP22 has the capacity to spread from a primary transduced cell to surrounding cells and improve the outcome of gene transfer. To improve the efficiency of plasmid-mediated gene therapy and investigate the utility of the intercellular trafficking properties of VP22-linked protein for the treatment for DMD, expression vectors for C-terminal versions of VP22-microdystrophin fusion protein was constructed and the VP22-mediated shuttle effect was evaluated both in vitro and in vivo. Results: Our results clearly demonstrate that the VP22-microdystrophin fusion protein could transport into C2C12 cells from 3T3 cells, moreover, the VP22-microdystrophin fusion protein enhanced greatly the amount of microdystrophin that accumulated following microdystrophin gene transfer in both transfected 3T3 cells and in the muscles of dystrophin-deficient (mdx) mice. Conclusion: These results highlight the efficiency of the VP22-mediated intercellular protein delivery for potential therapy of DMD and suggested that protein transduction may be a potential and versatile tool to enhance the effects of gene delivery for somatic gene therapy of DMD.National Natural Science Foundation of China (30370510, 30170337); CMB Fund (4209347); the Key Project of the State Ministry of Public Health (2001321); and National Nature Science Foundation of China (30400322)

    Advances and promises of layered halide hybrid perovskite semiconductors

    Get PDF
    Layered halide hybrid organic-inorganic perovskites (HOP) have been the subject of intense investigation before the rise of three-dimensional (3D) HOP and their impressive performance in solar cells. Recently, layered HOP have also been proposed as attractive alternatives for photostable solar cells and revisited for light-emitting devices. In this review, we combine classical solid-state physics concepts with simulation tools based on density functional theory to overview the main features of the optoelectronic properties of layered HOP. A detailed comparison between layered and 3D HOP is performed to highlight differences and similarities. In the same way as the cubic phase was established for 3D HOP, here we introduce the tetragonal phase with D symmetry as the reference phase for 2D monolayered HOP. It allows for detailed analysis of the spin-orbit coupling effects and structural transitions with corresponding electronic band folding. We further investigate the effects of octahedral tilting on the band gap, loss of inversion symmetry and possible Rashba effect, quantum confinement, and dielectric confinement related to the organic barrier, up to excitonic properties. Altogether, this paper aims to provide an interpretive and predictive framework for 3D and 2D layered HOP optoelectronic properties.The work at FOTON is supported by Agence Nationale pour la Recherche (SNAP and SuperSansPlomb projects) and was performed using HPC resources from GENCI-CINES/IDRIS Grant 2016-c2012096724. The work at ISCR is supported by Agence Nationale pour la Recherche (TRANSHYPERO project). J.E.’s work is supported by the Fondation d’entreprises banque Populaire de l’Ouest under Grant PEROPHOT 2015. The work at Los Alamos National Laboratory (LANL) was supported by LANL LDRD program and was partially performed at the Center for Nonlinear Studies and at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Science user facility. The Groningen team would like to acknowledge funding from European Research Council (ERC Starting Grant “Hy-SPOD” No. 306983) and by the Foundation for Fundamental Research on Matter (FOM), which is part of The Netherlands Organization for Scientific Research (NWO), under the framework of the FOM Focus Group “Next Generation Organic Photovoltaics”. ICN2 acknowledges support from the Severo Ochoa Program (MINECO, Grant SEV-2013-0295). This project received funding from the European Union's Horizon 2020 research and innovation programme under the grant agreement no. 687008.Peer Reviewe

    Identification and Characterization of Two Novel Compounds: Heterozygous Variants of Lipoprotein Lipase in Two Pedigrees With Type I Hyperlipoproteinemia

    Get PDF
    BackgroundType I hyperlipoproteinemia, characterized by severe hypertriglyceridemia, is caused mainly by loss-of-function mutation of the lipoprotein lipase (LPL) gene. To date, more than 200 mutations in the LPL gene have been reported, while only a limited number of mutations have been evaluated for pathogenesis.ObjectiveThis study aims to explore the molecular mechanisms underlying lipoprotein lipase deficiency in two pedigrees with type 1 hyperlipoproteinemia.MethodsWe conducted a systematic clinical and genetic analysis of two pedigrees with type 1 hyperlipoproteinemia. Postheparin plasma of all the members was used for the LPL activity analysis. In vitro studies were performed in HEK-293T cells that were transiently transfected with wild-type or variant LPL plasmids. Furthermore, the production and activity of LPL were analyzed in cell lysates or culture medium.ResultsProband 1 developed acute pancreatitis in youth, and her serum triglycerides (TGs) continued to be at an ultrahigh level, despite the application of various lipid-lowering drugs. Proband 2 was diagnosed with type 1 hyperlipoproteinemia at 9 months of age, and his serum TG levels were mildly elevated with treatment. Two novel compound heterozygous variants of LPL (c.3G>C, p. M1? and c.835_836delCT, p. L279Vfs*3, c.188C>T, p. Ser63Phe and c.662T>C, p. Ile221Thr) were identified in the two probands. The postheparin LPL activity of probands 1 and 2 showed decreases of 72.22 ± 9.46% (p<0.01) and 54.60 ± 9.03% (p<0.01), respectively, compared with the control. In vitro studies showed a substantial reduction in the expression or enzyme activity of LPL in the LPL variants.ConclusionsTwo novel compound heterozygous variants of LPL induced defects in the expression and function of LPL and caused type I hyperlipoproteinemia. The functional characterization of these variants was in keeping with the postulated LPL mutant activity

    Whether mindfulness-guided therapy can be a new direction for the rehabilitation of patients with Parkinson’s disease: a network meta-analysis of non-pharmacological alternative motor-/sensory-based interventions

    No full text
    BackgroundThe treatment for Parkinson’s disease (PD) consumes a lot of manpower and financial resources. Non-pharmacological alternative motor-/sensory-based interventions are optimized for the rehabilitation of PD patients. Mindfulness-based therapy shows ideal efficacy, but the diversity of the therapy brings difficulties to the selection of clinicians and patients.MethodsNetwork meta-analysis in the Bayesian framework was used to evaluate the efficacy of non-pharmacological alternative motor-/sensory-based interventions in improving motor and non-motor symptoms in PD patients.ResultsA total of 58 studies (2,227 patients) were included. Compared with the non-intervention group, qigong was associated with improved outcomes in the Timed Up and Go (TUG) test (mean difference (MD) −5.54, 95% confidence interval (CI) −8.28 to −2.77), and UPDRS-I (MD −15.50, 95% CI −19.93 to −7.63). Differences between non-pharmacological alternative motor-/sensory-based interventions were not significant for PDQ-39, UPDRS-I, or UPDRS-II; however, qigong was superior to dance (MD −3.91, 95% CI −6.90 to −0.95), Tai Chi (MD −3.54, 95% CI −6.53 to −0.69), acupuncture (MD −6.75, 95% CI −10.86 to −2.70), music (MD -3.91, 95% CI −7.49 to −0.48), and exercise (MD −3.91, 95% CI −6.49 to −1.33) in the TUG test.ConclusionThis network meta-analysis supports mindfulness-based therapy (e.g., qigong, yoga, and Tai Chi) as a preferred non-pharmacological alternative motor-/sensory-based intervention for PD rehabilitation.Systematic review registrationhttps://inplasy.com/inplasy-2022-10-0109/, INPLASY2022100109

    Vacuum-Free, All-Solution, and All-Air Processed Organic Photovoltaics with over 11% Efficiency and Promoted Stability Using Layer-by-Layer Codoped Polymeric Electrodes

    No full text
    Nonfullerene organic photovoltaics (OPVs) have achieved a breakthrough in pushing the efficiency beyond 15%. Although this sheds light on OPV commercialization, the high cost associated with the scalable device fabrications remains a giant challenge. Herein, a vacuum-free, all-solution and all-air processed OPV is reported that yields 11.12% efficiency with a fill factor of 0.725, due to the usages of high-merit polymeric electrodes and modified active blends. The design principle toward the high-merit electrodes is to induce heavy acid doping into the matrices for a raised carrier concentration and mobility, make a large removal of insulating components in the whole matrices rather than surfaces, and restrain the formation of large-domain aggregates. A unique layer-by-layer doping is developed to enable the polymeric electrodes with record-high trade-offs between optical transmittance and electrical conductivity. Moreover, solvent vapor annealing is proposed to boost device efficiency and it has the advantages of finely adjusting the active blend morphology and raising the electron mobility. The resulting devices are highly efficient and most (approximate to 91%) of the initial efficiency are maintained in 30 day storage. This work indicates bright future for making cost-effective all-solution processed OPVs in air
    corecore