21 research outputs found

    The impact of HCN4 channels on CNS brain networks as a new target in pain development

    Get PDF
    While it is well established that the isoform 2 of the hyperpolarization-activated cyclic nucleotide-gated cation channel (HCN2) plays an important role in the development and maintenance of pain, the role of the closely related HCN4 isoform in the processing of nociceptive signals is not known. HCN4 channels are highly expressed in the thalamus, a region important for stimulus transmission and information processing. We used a brain-specific HCN4-knockout mouse line (HCN4-KO) to explore the role of HCN4 channels in acute nociceptive processing using several behavioral tests as well as a multimodal magnetic resonance imaging (MRI) approach. Functional MRI (fMRI) brain responses were measured during acute peripheral thermal stimulation complemented by resting state (RS) before and after stimulation. The data were analyzed by conventional and graph-theoretical approaches. Finally, high-resolution anatomical brain data were acquired. HCN4-KO animals showed a central thermal, but not a mechanical hypersensitivity in behavioral experiments. The open field analysis showed no significant differences in motor readouts between HCN4-KO and controls but uncovered increased anxiety in the HCN4-KO mice. Thermal stimulus-driven fMRI (s-fMRI) data revealed increased response volumes and response amplitudes for HCN4-KO, most pronounced at lower stimulation temperatures in the subcortical input, the amygdala as well as in limbic/hippocampal regions, and in the cerebellum. These findings could be cross-validated by graph-theoretical analyses. Assessment of short-term RS before and after thermal stimulation revealed that stimulation-related modulations of the functional connectivity only occurred in control animals. This was consistent with the finding that the hippocampus was found to be smaller in HCN4-KO. In summary, the deletion of HCN4 channels impacts on processing of acute nociception, which is remarkably manifested as a thermal hypersensitive phenotype. This was mediated by the key regions hypothalamus, somatosensory cortex, cerebellum and the amygdala. As consequence, HCN4-KO mice were more anxious, and their brain-wide RS functional connectivity could not be modulated by thermal nociceptive stimulation

    Neutral sphingomyelinase mediates the co-morbidity trias of alcohol abuse, major depression and bone defects

    Get PDF
    Mental disorders are highly comorbid and occur together with physical diseases, which are often considered to arise from separate pathogenic pathways. We observed in alcohol-dependent patients increased serum activity of neutral sphingomyelinase. A genetic association analysis in 456,693 volunteers found associations of haplotypes of SMPD3 coding for NSM-2 (NSM) with alcohol consumption, but also with affective state, and bone mineralisation. Functional analysis in mice showed that NSM controls alcohol consumption, affective behaviour, and their interaction by regulating hippocampal volume, cortical connectivity, and monoaminergic responses. Furthermore, NSM controlled bone–brain communication by enhancing osteocalcin signalling, which can independently supress alcohol consumption and reduce depressive behaviour. Altogether, we identified a single gene source for multiple pathways originating in the brain and bone, which interlink disorders of a mental–physical co-morbidity trias of alcohol abuse—depression/anxiety—bone disorder. Targeting NSM and osteocalcin signalling may, thus, provide a new systems approach in the treatment of a mental–physical co-morbidity trias

    Author Correction:A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF

    Neutral sphingomyelinase mediates the co-morbidity trias of alcohol abuse, major depression and bone defects

    Get PDF
    Abstract Mental disorders are highly comorbid and occur together with physical diseases, which are often considered to arise from separate pathogenic pathways. We observed in alcohol-dependent patients increased serum activity of neutral sphingomyelinase. A genetic association analysis in 456,693 volunteers found associations of haplotypes of SMPD3 coding for NSM-2 (NSM) with alcohol consumption, but also with affective state, and bone mineralisation. Functional analysis in mice showed that NSM controls alcohol consumption, affective behaviour, and their interaction by regulating hippocampal volume, cortical connectivity, and monoaminergic responses. Furthermore, NSM controlled bone–brain communication by enhancing osteocalcin signalling, which can independently supress alcohol consumption and reduce depressive behaviour. Altogether, we identified a single gene source for multiple pathways originating in the brain and bone, which interlink disorders of a mental–physical co-morbidity trias of alcohol abuse—depression/anxiety—bone disorder. Targeting NSM and osteocalcin signalling may, thus, provide a new systems approach in the treatment of a mental–physical co-morbidity trias

    Imaging the influence of peripheral TRPV1-signaling on cerebral nociceptive processing applying fMRI-based graph theory in a resiniferatoxin rat model.

    Get PDF
    Resiniferatoxin (RTX), an extract from the spurge plant Euphorbia resinifera, is a potent agonist of the transient receptor potential cation channel subfamily V member 1 (TRPV1), mainly expressed on peripheral nociceptors-a prerequisite for nociceptive heat perception. Systemic overdosing of RTX can be used to desensitize specifically TRPV1-expressing neurons, and was therefore utilized here to selectively characterize the influence of TRPV1-signaling on central nervous system (CNS) temperature processing. Resting state and CNS temperature processing of male rats were assessed via functional magnetic resonance imaging before and after RTX injection. General linear model-based and graph-theoretical network analyses disentangled the underlying distinct CNS circuitries. At baseline, rats displayed an increase of nociception-related response amplitude and activated brain volume that correlated highly with increasing stimulation temperatures. In contrast, RTX-treated rats showed a clear disruption of thermal nociception, reflected in a missing increase of CNS responses to temperatures above 48°C. Graph-theoretical analyses revealed two distinct brain subnetworks affected by RTX: one subcortical (brainstem, lateral and medial thalamus, hippocampus, basal ganglia and amygdala), and one cortical (primary sensory, motor and association cortices). Resting state analysis revealed first, that peripheral desensitization of TRPV1-expressing neurons did not disrupt the basic resting-state-network of the brain. Second, only at baseline, but not after RTX, noxious stimulation modulated the RS-network in regions associated with memory formation (e.g. hippocampus). Altogether, the combination of whole-brain functional magnetic resonance imaging and RTX-mediated desensitization of TRPV1-signaling provided further detailed insight into cerebral processing of noxious temperatures

    Influence of the Peripheral Nervous System on Murine Osteoporotic Fracture Healing and Fracture-Induced Hyperalgesia

    Get PDF
    Osteoporotic fractures are often linked to persisting chronic pain and poor healing outcomes. Substance P (SP), α-calcitonin gene-related peptide (α-CGRP) and sympathetic neurotransmitters are involved in bone remodeling after trauma and nociceptive processes, e.g., fracture-induced hyperalgesia. We aimed to link sensory and sympathetic signaling to fracture healing and fracture-induced hyperalgesia under osteoporotic conditions. Externally stabilized femoral fractures were set 28 days after OVX in wild type (WT), α-CGRP- deficient (α-CGRP −/−), SP-deficient (Tac1−/−) and sympathectomized (SYX) mice. Functional MRI (fMRI) was performed two days before and five and 21 days post fracture, followed by µCT and biomechanical tests. Sympathectomy affected structural bone properties in the fracture callus whereas loss of sensory neurotransmitters affected trabecular structures in contralateral, non-fractured bones. Biomechanical properties were mostly similar in all groups. Both nociceptive and resting-state (RS) fMRI revealed significant baseline differences in functional connectivity (FC) between WT and neurotransmitter-deficient mice. The fracture-induced hyperalgesia modulated central nociception and had robust impact on RS FC in all groups. The changes demonstrated in RS FC in fMRI might potentially be used as a bone traumata-induced biomarker regarding fracture healing under pathophysiological musculoskeletal conditions. The findings are of clinical importance and relevance as they advance our understanding of pain during osteoporotic fracture healing and provide a potential imaging biomarker for fracture-related hyperalgesia and its temporal development. Overall, this may help to reduce the development of chronic pain after fracture thereby improving the treatment of osteoporotic fractures

    Influence of the Peripheral Nervous System on Murine Osteoporotic Fracture Healing and Fracture-Induced Hyperalgesia

    Get PDF
    Osteoporotic fractures are often linked to persisting chronic pain and poor healing outcomes. Substance P (SP), α-calcitonin gene-related peptide (α-CGRP) and sympathetic neurotransmitters are involved in bone remodeling after trauma and nociceptive processes, e.g., fracture-induced hyperalgesia. We aimed to link sensory and sympathetic signaling to fracture healing and fracture-induced hyperalgesia under osteoporotic conditions. Externally stabilized femoral fractures were set 28 days after OVX in wild type (WT), α-CGRP- deficient (α-CGRP −/−), SP-deficient (Tac1−/−) and sympathectomized (SYX) mice. Functional MRI (fMRI) was performed two days before and five and 21 days post fracture, followed by µCT and biomechanical tests. Sympathectomy affected structural bone properties in the fracture callus whereas loss of sensory neurotransmitters affected trabecular structures in contralateral, non-fractured bones. Biomechanical properties were mostly similar in all groups. Both nociceptive and resting-state (RS) fMRI revealed significant baseline differences in functional connectivity (FC) between WT and neurotransmitter-deficient mice. The fracture-induced hyperalgesia modulated central nociception and had robust impact on RS FC in all groups. The changes demonstrated in RS FC in fMRI might potentially be used as a bone traumata-induced biomarker regarding fracture healing under pathophysiological musculoskeletal conditions. The findings are of clinical importance and relevance as they advance our understanding of pain during osteoporotic fracture healing and provide a potential imaging biomarker for fracture-related hyperalgesia and its temporal development. Overall, this may help to reduce the development of chronic pain after fracture thereby improving the treatment of osteoporotic fractures

    Central amygdala circuitry modulates nociceptive processing through differential hierarchical interaction with affective network dynamics

    No full text
    In order to examine how central amygdala (CE) local circuitry interacts with brain-wide affective states, Wank et al performed gene expression analysis and optogenetic fMRI in mice, using basic nociception as a proxy. They found evidence for diverging roles of two major CE neuronal populations in modulating global brain states, which impacts on aversive processing and nocifensive behaviour

    Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis

    No full text
    Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network signatures observed in human studies. Mouse rsfMRI has been increasingly adopted by numerous laboratories worldwide. Here we describe a multi-centre comparison of 17 mouse rsfMRI datasets via a common image processing and analysis pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures, we report the reproducible identification of several large-scale resting-state networks (RSN), including a mouse default-mode network, in the majority of datasets. A combination of factors was associated with enhanced reproducibility in functional connectivity parameter estimation, including animal handling procedures and equipment performance. RSN spatial specificity was enhanced in datasets acquired at higher field strength, with cryoprobes, in ventilated animals, and under medetomidine-isoflurane combination sedation. Our work describes a set of representative RSNs in the mouse brain and highlights key experimental parameters that can critically guide the design and analysis of future rodent rsfMRI investigations

    Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis

    No full text
    International audiencePreclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network signatures observed in human studies. Mouse rsfMRI has been increasingly adopted by numerous laboratories worldwide. Here we describe a multi-centre comparison of 17 mouse rsfMRI datasets via a common image processing and analysis pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures, we report the reproducible identification of several large-scale resting-state networks (RSN), including a mouse default-mode network, in the majority of datasets. A combination of factors was associated with enhanced reproducibility in functional connectivity parameter estimation, including animal handling procedures and equipment performance. RSN spatial specificity was enhanced in datasets acquired at higher field strength, with cryoprobes, in ventilated animals, and under medetomidine-isoflurane combination sedation. Our work describes a set of representative RSNs in the mouse brain and highlights key experimental parameters that can critically guide the design and analysis of future rodent rsfMRI investigations
    corecore