5 research outputs found

    Surface Ni-rich engineering towards highly stable Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode materials

    Get PDF
    Abstract(#br)Li-rich layered oxide cathode materials (LLOs) are regarded as promising next-generation cathode candidate in high-energy-density lithium ion batteries due to their high specific capacity over 250 mA h g −1 . However, LLOs always suffer from a series of severe issues, such as rapid voltage fading, fast capacity decay and bad cycling stability. In this work, Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 -Li 1.2 Mn 0.44 Ni 0.32 Co 0.04 O 2 (LLO-111@111/811) hybrid layered-layered cathode is constructed via facilely increasing surface Ni content. Profiting from this special design, the prepared LLO-111@111/811 cathode exhibits a remarkable specific capacity of 249 mA h g −1 with a high capacity retention of 89.3% and a high discharge voltage of 3.57 V with a voltage retention of 83.0% after cycling 350 times at 0.5 C. As a result, the specific energy of LLO-111@111/811 cathode is 887 Wh Kg −1 at 0.5 C and it keeps as high as 658 Wh Kg −1 after 350 cycles. LLO-111@111/811 also exhibits an initial high capacity of 169 mA h g −1 at a high rate of 5 C and maintains a good capacity retention of 90.0% after 200 cycles. This strategy can successfully improve structural stability, suppress capacity decay and restrain voltage fading of LLOs, which is beneficial for their practical application
    corecore