12 research outputs found

    Trehalose does not improve neuronal survival on exposure to alpha-synuclein pre-formed fibrils

    No full text
    Parkinson's disease is a debilitating neurodegenerative disorder that is pathologically characterized by intracellular inclusions comprised primarily of alpha-synuclein (αSyn) that can also be transmitted from neuron to neuron. Several lines of evidence suggest that these inclusions cause neurodegeneration. Thus exploring strategies to improve neuronal survival in neurons with αSyn aggregates is critical. Previously, exposure to αSyn pre-formed fibrils (PFFs) has been shown to induce aggregation of endogenous αSyn resulting in cell death that is exacerbated by either starvation or inhibition of mTOR by rapamycin, both of which are able to induce autophagy, an intracellular protein degradation pathway. Since mTOR inhibition may also inhibit protein synthesis and starvation itself can be detrimental to neuronal survival, we investigated the effects of autophagy induction on neurons with αSyn inclusions by a starvation and mTOR-independent autophagy induction mechanism. We exposed mouse primary cortical neurons to PFFs to induce inclusion formation in the presence and absence of the disaccharide trehalose, which has been proposed to induce autophagy and stimulate lysosomal biogenesis. As expected, we observed that on exposure to PFFs, there was increased abundance of pS129-αSyn aggregates and cell death. Trehalose alone increased LC3-II levels, consistent with increased autophagosome levels that remained elevated with PFF exposure. Interestingly, trehalose alone increased cell viability over a 14-d time course. Trehalose was also able to restore cell viability to control levels, but PFFs still exhibited toxic effects on the cells. These data provide essential information regarding effects of trehalose on αSyn accumulation and neuronal survival on exposure to PFF. Keywords: Parkinson's disease, Alpha-synuclein fibrils, P-alpha-synuclein trehalose, Autophagy, LC3-I

    O-GlcNAc regulation of autophagy and α-synuclein homeostasis; implications for Parkinson’s disease

    No full text
    Abstract Post-translational modification on protein Ser/Thr residues by O-linked attachment of ß-N-acetyl-glucosamine (O-GlcNAcylation) is a key mechanism integrating redox signaling, metabolism and stress responses. One of the most common neurodegenerative diseases that exhibit aberrant redox signaling, metabolism and stress response is Parkinson’s disease, suggesting a potential role for O-GlcNAcylation in its pathology. To determine whether abnormal O-GlcNAcylation occurs in Parkinson’s disease, we analyzed lysates from the postmortem temporal cortex of Parkinson’s disease patients and compared them to age matched controls and found increased protein O-GlcNAcylation levels. To determine whether increased O-GlcNAcylation affects neuronal function and survival, we exposed rat primary cortical neurons to thiamet G, a highly selective inhibitor of the enzyme which removes the O-GlcNAc modification from target proteins, O-GlcNAcase (OGA). We found that inhibition of OGA by thiamet G at nanomolar concentrations significantly increased protein O-GlcNAcylation, activated MTOR, decreased autophagic flux, and increased α-synuclein accumulation, while sparing proteasomal activities. Inhibition of MTOR by rapamycin decreased basal levels of protein O-GlcNAcylation, decreased AKT activation and partially reversed the effect of thiamet G on α-synuclein monomer accumulation. Taken together we have provided evidence that excessive O-GlcNAcylation is detrimental to neurons by inhibition of autophagy and by increasing α-synuclein accumulation

    Inhibition of autophagy with bafilomycin and chloroquine decreases mitochondrial quality and bioenergetic function in primary neurons

    Get PDF
    Autophagy is an important cell recycling program responsible for the clearance of damaged or long-lived proteins and organelles. Pharmacological modulators of this pathway have been extensively utilized in a wide range of basic research and pre-clinical studies. Bafilomycin A1 and chloroquine are commonly used compounds that inhibit autophagy by targeting the lysosomes but through distinct mechanisms. Since it is now clear that mitochondrial quality control, particularly in neurons, is dependent on autophagy, it is important to determine whether these compounds modify cellular bioenergetics. To address this, we cultured primary rat cortical neurons from E18 embryos and used the Seahorse XF96 analyzer and a targeted metabolomics approach to measure the effects of bafilomycin A1 and chloroquine on bioenergetics and metabolism. We found that both bafilomycin and chloroquine could significantly increase the autophagosome marker LC3-II and inhibit key parameters of mitochondrial function, and increase mtDNA damage. Furthermore, we observed significant alterations in TCA cycle intermediates, particularly those downstream of citrate synthase and those linked to glutaminolysis. Taken together, these data demonstrate a significant impact of bafilomycin and chloroquine on cellular bioenergetics and metabolism consistent with decreased mitochondrial quality associated with inhibition of autophagy

    Regulation of autophagy, mitochondrial dynamics, and cellular bioenergetics by 4-hydroxynonenal in primary neurons

    No full text
    <p>The production of reactive species contributes to the age-dependent accumulation of dysfunctional mitochondria and protein aggregates, all of which are associated with neurodegeneration. A putative mediator of these effects is the lipid peroxidation product 4-hydroxynonenal (4-HNE), which has been shown to inhibit mitochondrial function, and accumulate in the postmortem brains of patients with neurodegenerative diseases. This deterioration in mitochondrial quality could be due to direct effects on mitochondrial proteins, or through perturbation of the macroautophagy/autophagy pathway, which plays an essential role in removing damaged mitochondria. Here, we use a click chemistry-based approach to demonstrate that alkyne-4-HNE can adduct to specific mitochondrial and autophagy-related proteins. Furthermore, we found that at lower concentrations (5–10 μM), 4-HNE activates autophagy, whereas at higher concentrations (15 μM), autophagic flux is inhibited, correlating with the modification of key autophagy proteins at higher concentrations of alkyne-4-HNE. Increasing concentrations of 4-HNE also cause mitochondrial dysfunction by targeting complex V (the ATP synthase) in the electron transport chain, and induce significant changes in mitochondrial fission and fusion protein levels, which results in alterations to mitochondrial network length. Finally, inhibition of autophagy initiation using 3-methyladenine (3MA) also results in a significant decrease in mitochondrial function and network length. These data show that both the mitochondria and autophagy are critical targets of 4-HNE, and that the proteins targeted by 4-HNE may change based on its concentration, persistently driving cellular dysfunction.</p
    corecore