35 research outputs found

    Porcine RIG-I and MDA5 Signaling CARD Domains Exert Similar Antiviral Function Against Different Viruses

    Get PDF
    The RIG-I-like receptors (RLRs) RIG-I and MDA5 play critical roles in sensing and fighting viral infections. Although RIG-I and MDA5 have similar molecular structures, these two receptors have distinct features during activation. Further, the signaling domains of the N terminal CARD domains (CARDs) in RIG-I and MDA5 share poor similarity. Therefore, we wonder whether the CARDs of RIG-I and MDA5 play similar roles in signaling and antiviral function. Here we expressed porcine RIG-I and MDA5 CARDs in 293T cells and porcine alveolar macrophages and found that MDA5 CARDs exhibit higher expression and stronger signaling activity than RIG-I CARDs. Nevertheless, both RIG-I and MDA5 CARDs exert comparable antiviral function against several viruses. Transcriptome analysis showed that MDA5 CARDs are more effective in regulating downstream genes. However, in the presence of virus, both RIG-I and MDA5 CARDs exhibit similar effects on downstream gene transcriptions, reflecting their antiviral function

    Health effects of high serum calcium levels:Updated phenome-wide Mendelian randomisation investigation and review of Mendelian randomisation studies

    Get PDF
    BACKGROUND: Calcium plays a role in a wide range of biological functions. Here we conducted a phenome-wide Mendelian randomisation (MR-PheWAS) analysis and a systematic review for MR studies to comprehensively investigate the health effects of serum calcium. METHODS: One-hundred and thirty genetic variants strongly associated with serum calcium levels were used as instrumental variables. A phenome-wide association analysis (PheWAS) was conducted to examine the associations of genetically predicted serum calcium with 1473 distinct phenotypes in the UK Biobank including 339,197 individuals. Observed associations in PheWAS were further tested for replication in two-sample MR replication analysis. A systematic review for MR studies on serum calcium was performed to synthesize the published evidence and compare with the current MR-PheWAS findings. FINDINGS: Higher genetically predicted calcium levels were associated with decreased risk of 5 diseases in dermatologic and musculoskeletal systems and increased risk of 17 diseases in circulatory, digestive, endocrine, genitourinary and immune systems. Eight associations were replicated in two-sample MR analysis. These included decreased risk of osteoarthritis and increased risk of coronary artery disease, myocardial infarction, coronary atherosclerosis, hyperparathyroidism, disorder of parathyroid gland, gout, and calculus of kidney and ureter with increased serum calcium. Systematic review of 25 MR studies provided supporting evidence on five out of the eight disease outcomes, while the increased risk of gout, hyperparathyroidism and disorder of parathyroid gland were novel findings. INTERPRETATION: This study found wide-ranged health effects of high serum calcium, which suggests that the benefits and adversities of strategies promoting calcium intake should be assessed. FUNDING: ET is supported by a CRUK Career Development Fellowship (C31250/A22804). XL is supported by the Natural Science Fund for Distinguished Young Scholars of Zhejiang Province. SCL acknowledges research funding from the Swedish Heart Lung Foundation (Hjärt-Lungfonden, 20210351), the Swedish Research Council (Vetenskapsrådet, 2019-00977), and the Swedish Cancer Society (Cancerfonden)

    Zearalenone Promotes Cell Proliferation or Causes Cell Death?

    Get PDF
    Citation: Zheng, W.; Wang, B.; Li, X.; Wang, T.; Zou, H.; Gu, J.; Yuan, Y.; Liu, X.; Bai, J.; Bian, J.; Liu, Z. Zearalenone Promotes Cell Proliferation or Causes Cell Death? Toxins 2018, 10, 184.Zearalenone (ZEA), one of the mycotoxins, exerts different mechanisms of toxicity in different cell types at different doses. It can not only stimulate cell proliferation but also inhibit cell viability, induce cell apoptosis, and cause cell death. Thus, the objective of this review is to summarize the available mechanisms and current evidence of what is known about the cell proliferation or cell death induced by ZEA. An increasing number of studies have suggested that ZEA promoted cell proliferation attributing to its estrogen-like effects and carcinogenic properties. What’s more, many studies have indicated that ZEA caused cell death via affecting the distribution of the cell cycle, stimulating oxidative stress and inducing apoptosis. In addition, several studies have revealed that autophagy and some antioxidants can reverse the damage or cell death induced by ZEA. This review thoroughly summarized the metabolic process of ZEA and the molecular mechanisms of ZEA stimulating cell proliferation and cell death. It concluded that a low dose of ZEA can exert estrogen-like effects and carcinogenic properties, which can stimulate the proliferation of cells. While, in addition, a high dose of ZEA can cause cell death through inducing cell cycle arrest, oxidative stress, DNA damage, mitochondrial damage, and apoptosis

    How the Innate Immune DNA Sensing cGAS-STING Pathway Is Involved in Apoptosis

    No full text
    The cGAS–STING signaling axis can be activated by cytosolic DNA, including both non-self DNA and self DNA. This axis is used by the innate immune system to monitor invading pathogens and/or damage. Increasing evidence has suggested that the cGAS-STING pathway not only facilitates inflammatory responses and the production of type I interferons (IFN), but also activates other cellular processes, such as apoptosis. Recently, many studies have focused on analyzing the mechanisms of apoptosis induced by the cGAS-STING pathway and their consequences. This review gives a detailed account of the interplay between the cGAS-STING pathway and apoptosis. The cGAS-STING pathway can induce apoptosis through ER stress, NLRP3, NF-κB, IRF3, and IFN signals. Conversely, apoptosis can feed back to regulate the cGAS-STING pathway, suppressing it via the activation of caspases or promoting it via mitochondrial DNA (mtDNA) release. Apoptosis mediated by the cGAS-STING pathway plays crucial roles in balancing innate immune responses, resisting infections, and limiting tumor growth

    Cost-effectiveness of palbociclib plus fulvestrant as second-line therapy of women with HR+/HER2- advanced breast cancer - A Chinese healthcare system perspective

    Get PDF
    AimTo evaluate the cost-effectiveness of palbociclib plus fulvestrant in the second-line treatment of women with hormone receptor-positive and human epidermal growth factor receptor 2-negative advanced breast cancer based on the latest published follow-up data from the perspective of the Chinese healthcare system.MethodsIn view of the PALOMA-3 trial, a Markov model was built for this purpose, which included three health states: progression-free survival (PFS), progressed disease (PD), and death. The cost and health utilities were mainly derived from the published literature. One-way sensitivity analysis and probabilistic sensitivity analysis were carried out to verify the robustness of the model.ResultsIn the base case analysis, compared with the placebo plus fulvestrant arm, the palbociclib plus fulvestrant arm yielded an additional 0.65 quality-adjusted life years (QALYs) (2.56 QALYs vs. 1.90 QALYs) with an incremental cost of 36,139.94(36,139.94 (55,482.06 vs. 19,342.12),resultinganincrementalcost−effectivenessratio(ICER)of19,342.12), resulting an incremental cost-effectiveness ratio (ICER) of 55,224.90/QALY, which was deeply higher than a willingness-to-pay (WTP) threshold of $34,138.28 per QALY in China. The results of one-way sensitivity analysis indicated that the utility of PFS, cost of palbociclib, and cost of neutropenia had a great influence on the ICER.ConclusionsPalbociclib plus fulvestrant is unlikely to be cost-effective in comparison with placebo plus fulvestrant as second-line therapy of women with HR+/HER2- advanced breast cancer

    The Short-Term Variation of Human Gut Mycobiome in Response to Dietary Intervention of Different Macronutrient Distributions

    No full text
    While the human gut is home to a complex and diverse community of microbes, including bacteria and fungi, research on the gut microbiome has largely focused on bacteria, with relatively little attention given to the gut mycobiome. This study aims to investigate how diets with different dietary macronutrient distributions impact the gut mycobiome. We investigated gut mycobiome response to high-carbohydrate, low-fat (HC) and low-carbohydrate high-fat (LC) diet interventions based on a series of 72-day feeding-based n-of-1 clinical trials. A total of 30 participants were enrolled and underwent three sets of HC and LC dietary interventions in a randomized sequence. Each set lasted for 24 days with a 6-day washout period between dietary interventions. We collected and analyzed the fungal composition of 317 stool samples before and after each intervention period. To account for intra-individual variation across the three sets, we averaged the mycobiome data from the repeated sets for analysis. Of the 30 participants, 28 (aged 22–34 years) completed the entire intervention. Our results revealed a significant increase in gut fungal alpha diversity (p p Pleurotus, Kazachstania, Auricularia, Paraphaeosphaeria, Ustilaginaceae sp.; FDR Blumeria; FDR = 0.03) after the HC intervention. After the LC dietary intervention, one fungal genus was enriched (Ustilaginaceae sp.; FDR = 0.003), and five fungal genera were depleted (Blumeria, Agaricomycetes spp., Malassezia, Rhizopus, and Penicillium; FDR < 0.1). This study provides novel evidence on how the gut mycobiome structure and composition change in response to the HC and LC dietary interventions and reveals diet-specific changes in the fungal genera

    How the Innate Immune DNA Sensing cGAS&ndash;STING Pathway Is Involved in Autophagy

    No full text
    The cGAS&ndash;STING pathway is a key component of the innate immune system and exerts crucial roles in the detection of cytosolic DNA and invading pathogens. Accumulating evidence suggests that the intrinsic cGAS&ndash;STING pathway not only facilitates the production of type I interferons (IFN-I) and inflammatory responses but also triggers autophagy. Autophagy is a homeostatic process that exerts multiple effects on innate immunity. However, systematic evidence linking the cGAS&ndash;STING pathway and autophagy is still lacking. Therefore, one goal of this review is to summarize the known mechanisms of autophagy induced by the cGAS&ndash;STING pathway and their consequences. The cGAS&ndash;STING pathway can trigger canonical autophagy through liquid-phase separation of the cGAS&ndash;DNA complex, interaction of cGAS and Beclin-1, and STING-triggered ER stress&ndash;mTOR signaling. Furthermore, both cGAS and STING can induce non-canonical autophagy via LC3-interacting regions and binding with LC3. Subsequently, autophagy induced by the cGAS&ndash;STING pathway plays crucial roles in balancing innate immune responses, maintaining intracellular environmental homeostasis, alleviating liver injury, and limiting tumor growth and transformation

    Treatment with, Resveratrol, a SIRT1 Activator, Prevents Zearalenone-Induced Lactic Acid Metabolism Disorder in Rat Sertoli Cells

    No full text
    Zearalenone (ZEA) interferes with the function of the male reproductive system, but its molecular mechanism has yet to be completely elucidated. Sertoli cells (SCs) are important in the male reproductive system. Silencing information regulator 1 (SIRT1) is a cell metabolism sensor and resveratrol (RSV) is an activator of SIRT1. In this study we investigated whether SIRT1 is involved in the regulation of ZEA-induced lactate metabolism disorder in SCs. The results showed that the cytotoxicity of ZEA toward SCs increased with increasing ZEA concentration. Moreover, ZEA induced a decrease in the production of lactic acid and pyruvate of SCs and inhibited the expression of glycolytic genes and lactic acid production-related proteins. ZEA also led to a decreased expression of SIRT1 in energy receptors and decreased ATP levels in SCs. However, the ZEA-induced cytotoxicity and decline in lactic acid production in SCs were alleviated by the use of RSV, which is an activator of SIRT1. In summary, ZEA decreased lactic acid production in SCs, while the treatment with an SIRT1 activator, RSV, restored the inhibition of lactic acid production in SCs and reduced cytotoxicity of ZEA toward SCs

    The Signal Peptide and Chaperone UNC93B1 Both Influence TLR8 Ectodomain Intracellular Endosomal Localization

    No full text
    Toll-like receptor 8 (TLR8) is a single-stranded RNA sensing receptor and is localized in the cellular compartments, where it encounters foreign or self-nucleic acids and activates innate and adaptive immune responses. However, the mechanism controlling intracellular localization TLR8 is not completely resolved. We previously revealed the intracellular localization of TLR8 ectodomain (ECD), and in this study, we investigated the mechanism of the intracellular localization. Here we found that TLR8 ECDs from different species as well as ECDs from different TLRs are all intracellularly localized, similarly to the full-length porcine TLR8. Furthermore, porcine, bovine, and human TLR8 ECDs are all localized in cell endosomes, reflecting the cellular localization of TLR8. Intriguingly, none of post-translational modifications at single sites, including glycosylation, phosphorylation, ubiquitination, acetylation, and palmitoylation alter porcine TLR8-ECD endosomal localization. Nevertheless, the signal peptide of porcine TLR8-ECD determines its endosomal localization. On the other hand, signaling regulator UNC93B1 also decides the endosomal localization of porcine, bovine, and human TLR8 ECDs. The results from this study shed light on the mechanisms of not only TLR8 intracellular localization but also the TLR immune signaling
    corecore