271 research outputs found

    Mooring line fatigue damage evaluation for floating marine energy converters: Field measurements and prediction

    Get PDF
    publication-status: Publishedtypes: ArticleThe vision of large-scale commercial arrays of floating marine energy converters (MECs) necessitates the robust, yet cost-effective engineering of devices. Given the continuous environmental loading, fatigue has been iden- tified as one of the key engineering challenges. In particular the mooring sys- tem which warrants the station-keeping of such devices is subject to highly cyclic, non-linear load conditions, mainly induced by the incident waves. To ensure the integrity of the mooring system the lifecycle fatigue spec- trum must be predicted in order to compare the expected fatigue damage against the design limits. The fatigue design of components is commonly as- sessed through numerical modelling of representative load cases. However, for new applications such as floating marine energy converters numerical models are often scantily validated. This paper describes an approach where load measurements from large- scale field trials at the South West Mooring Testing Facility (SWMTF) are used to calculate and predict the fatigue damage. The described procedure employs a Rainflow cycle analysis in conjunction with the Palmgren-Miner rule to estimate the accumulated damage for the deployment periods and individual sea states. This approach allows an accurate fatigue assessment and prediction of mooring lines at a design stage, where field trial load measurements and wave climate information of potential installation sites are available. The mooring design can thus be optimised regarding its fatigue life and costly safety factors can be reduced. The proposed method also assists in monitoring and assessing the fatigue life during deployment periods

    Hydrodynamic response of a submerged tunnel element suspended from a twin-barge under random waves

    Get PDF
    It is possible that the excessive dynamic responses of tunnel elements could jeopardize the safety and accuracy of installation procedures used during subsea tunnel construction. To investigate the motion characteristics of the tunnel element, experimental measurements of a moored tunnel element suspended from a twin-barge were conducted in a wave flume at a geometric scale of 1:50. A corresponding numerical model was developed to simulate the dynamic response of the tunnel-barge system in realistic sea conditions, using hydrodynamic parameters from a radiation/diffraction potential model. Multiple linear wave conditions and three immersion depths were tested. The results indicate that the motion response of the tunnel element increases with decreasing immersion depth, and the natural periods of the tunnel, barge and combined tunnel-barge system play key roles in the influence of wave conditions on the motions of the tunnel. It was found that the low-frequency motion of the tunnel element is large in small wave periods. The mooring system under such conditions needs to be considered carefully during system design in order to safely control the motions of the tunnel-barge system in energetic ocean environments.The work is supported by the National Natural Science Foundation of China (Grant No.11272079), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51221961) and the China Scholarship Council (award to Yang Can for 1 year’s study abroad at the University of Exeter)

    Experimental and numerical investigation on coupled motion characteristics of a tunnel element suspended from a twin-barge

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThe coupled motion characteristics of a tunnel element, which is suspended from a twin-barge and moored to the seabed during the installation process, has been investigated using a 1:50 scaled model. Response characteristics are obtained for multiple regular wave conditions and three different immersion depths. Experimental investigation includes studies to identify system properties of individual arrangements (tunnel, twin-barge) and for the coupled tunnel & twin-barge configuration. Investigation of motion characteristics includes i) experimental studies of the tunnel element from a fixed suspension point and barge, ii) experimental studies with and without a mooring arrangement from the tunnel element to the seabed, iii) experimental study of the fully coupled tunnel & twin-barge configuration, and iv) numerical investigation of the fully coupled tunnel & twin-barge configuration using a commercial fully dynamic mooring simulation software (OrcaFlex™). The experimental investigations were carried out in the State Key Laboratory of Coastal and Offshore Engineering at Dalian University of Technology (DUT), using the ‘6-D Measurement System’ (6D-UMS) to obtain six degree of motions for both the tunnel and twin-barge. For the numerical study hydrodynamic properties were obtained from the diffraction/radiation potential code WAMIT for simplified tunnel and twin-barge elements and used to derive fully coupled motion behavior using the time-domain mooring simulation software OrcaFlex™. The results are presented in order to provide insights into the motion characteristics for the different configurations studied. The main findings indicate that the sway and roll motions for the coupled tunnel & twin-barge configuration decrease with increasing wave incidence angle and immersion depths. The use of additional mooring lines to restrain the tunnel element to the seabed played a further role in reducing the motions of the tunnel element, particularly when subjected to large amplitude and long period waves.The study is supported by the National Natural Science Foundation of China (Grant No.11272079) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51221961) and the China Scholarship Council (award to Yang Can for 1 year's study abroad at the University of Exeter). The corresponding author has been partly funded through EPSRC grant EP/R007519/1

    Quantum Gates and Memory using Microwave Dressed States

    Full text link
    Trapped atomic ions have been successfully used for demonstrating basic elements of universal quantum information processing (QIP). Nevertheless, scaling up of these methods and techniques to achieve large scale universal QIP, or more specialized quantum simulations remains challenging. The use of easily controllable and stable microwave sources instead of complex laser systems on the other hand promises to remove obstacles to scalability. Important remaining drawbacks in this approach are the use of magnetic field sensitive states, which shorten coherence times considerably, and the requirement to create large stable magnetic field gradients. Here, we present theoretically a novel approach based on dressing magnetic field sensitive states with microwave fields which addresses both issues and permits fast quantum logic. We experimentally demonstrate basic building blocks of this scheme to show that these dressed states are long-lived and coherence times are increased by more than two orders of magnitude compared to bare magnetic field sensitive states. This changes decisively the prospect of microwave-driven ion trap QIP and offers a new route to extend coherence times for all systems that suffer from magnetic noise such as neutral atoms, NV-centres, quantum dots, or circuit-QED systems.Comment: 9 pages, 4 figure

    Multi-qubit gate with trapped ions for microwave and laser-based implementation

    Get PDF
    A proposal for a phase gate and a Mølmer–Sørensen gate in the dressed state basis is presented. In order to perform the multi-qubit interaction, a strong magnetic field gradient is required to couple the phonon-bus to the qubit states. The gate is performed using resonant microwave driving fields together with either a radio-frequency (RF) driving field, or additional detuned microwave driving fields. The gate is robust to ambient magnetic field fluctuations due to an applied resonant microwave driving field. Furthermore, the gate is robust to fluctuations in the microwave Rabi frequency and is decoupled from phonon dephasing due to a resonant RF or a detuned microwave driving field. This makes this new gate an attractive candidate for the implementation of high-fidelity microwave based multi-qubit gates. The proposal can also be realized in laser-based set-ups

    Mooring systems for marine energy converters

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.This paper discusses several new technologies for mooring floating marine energy converter (MEC) devices, such as wave energy generators, tidal current turbines and floating wind turbines. The principal mooring component is a special nylon fiber rope which provides cyclic tension fatigue endurance much superior to that of conventional nylon ropes. The nylon fiber is treated with a new proprietary coating which has excellent wet yarn abrasion properties. The parallel-subrope type rope construction further reduces internal abrasion. Extensive laboratory testing was carried out on this new nylon rope design. Cyclic tension fatigue tests were conducted at mean loads and load amplitudes typical of actual service conditions and at higher mean loads and amplitudes. These tests demonstrate that the special nylon rope has essentially the same, desirable stretch characteristics as conventional nylon rope and has much better endurance performance. The mooring connection to the floating MEC device consists of a high-modulus fiber rope pendant which passes through a low-friction bell-mouth nylon fairlead on the MEC device. This eliminates the use of heavy, unreliable chain in this critical connection. A unique bag anchor system would be used on sand, clay, rock and other sea beds in which conventional drag embedment anchors and driven piles are impractical. The bag anchor consists of a large abrasion resistant carcass with lifting straps and top closure. The bag is transported to site in a collapsed form and is filled with local sand or aggregate to provide ballast weight. Several or many such bags are enclosed within a fiber rope net for deployment and are grouped together for connection to the mooring line. The paper will be of particular interest to designers of moorings for MEC systems in shallow water and severe wave environments. It will also be of interest for other mooring applications.This work would not have been possible without the funding and support of the Scottish Government, the Carbon Trust and Innovate UK.   The project was funded under the Marine Renewables Commercialization Fund (MRCF) and Marine Energy Supporting Array Technologies (MESAT).   Other partners who contributed to this project include Lloyd’s Register, DNV‐GL, TenCate, Orion Energy Centre, Nylacast, and offshore wind developer IDEOL.    Input and encouragement was provided by tidal power developer partner Bluewater, and wave energy developers AWS Ocean Energy and Pelamis.

    Quantum gates using electronic and nuclear spins of Yb+^{+} in a magnetic field gradient

    Full text link
    An efficient scheme is proposed to carry out gate operations on an array of trapped Yb+^+ ions, based on a previous proposal using both electronic and nuclear degrees of freedom in a magnetic field gradient. For this purpose we consider the Paschen-Back regime (strong magnetic field) and employ a high-field approximation in this treatment. We show the possibility to suppress the unwanted coupling between the electron spins by appropriately swapping states between electronic and nuclear spins. The feasibility of generating the required high magnetic field is discussed

    Franck-Condon Physics in A Single Trapped Ion

    Full text link
    We propose how to explore the Franck-Condon (FC) physics via a single ion confined in a spin-dependent potential, formed by the combination of a Paul trap and a magnetic field gradient. The correlation between electronic and vibrational degrees of freedom, called as electron-vibron coupling, is induced by a nonzero gradient. For a sufficiently strong electron-vibron coupling, the FC blockade of low-lying vibronic transitions takes place. We analyze the feasibility of observing the FC physics in a single trapped ion, and demonstrate various potential applications of the ionic FC physics in quantum state engineering and quantum information processing.Comment: 7 pages, 5 figure

    The SPAIR method: Isolating incident and reflected directional wave spectra in multidirectional wave basins

    Get PDF
    Wave tank tests aiming to reproduce realistic or site specific conditions will commonly involve using directionally spread, short-crested sea states. The measurement of these directional characteristics is required for the purposes of calibrating and validating the modelled sea state. Commonly used methods of directional spectrumreconstruction, based on directional spreading functions, have an inherent level of uncertainty associated with them. In this paper we aim to reduce the uncertainty in directional spectrum validation by introducing the SPAIR (Single-summation PTPD Approach with In-line Reflections) method, in combination with a directional wave gauge array. A variety of wave conditions were generated in the FloWave Ocean Energy Research Facility, Edinburgh, UK, to obtain a range of sea state and reflection scenarios. The presented approach is found to provide improved estimates of directional spectra over standardmethods, reducing the mean apparent directional deviation down to below 6% over the range of sea states. Additionally, the method isolates incident and reflected spectra in both the frequency and time domain, and can separate these wave systems over 360°. The accuracy of themethod is shown to be only slightly sensitive to the level of in-line reflectionpresent,but at present cannot dealwithoblique reflections. The SPAIRmethod, as presented or with slightmodification, will allow complex directional sea states to be validated more effectively, enabling multidirectional wave basins to simulate realistic wave scenarios with increased confidence
    • …
    corecore