314 research outputs found

    Triplet–Triplet Energy Transfer Study in Hydrogen Bonding Systems

    Get PDF
    The 2,6-diiodoBodipy–styrylBodipy hydrogen bonding system was prepared to study the effect of hydrogen bonding on the triplet–triplet-energy-transfer (TTET) process. 2,6-DiiodoBodipy linked with N-acetyl-2,6-diaminopyridine (D-2) was used as the triplet energy donor, and the styrylBodipy connected with thymine (A-1) was used as triplet energy acceptor, thus the TTET process was established upon photoexcitation. The photophysical processes of the hydrogen bonding system were studied with steady-state UV-vis absorption spectroscopy, fluorescence spectroscopy, fluorescence lifetime measurement and nanosecond time-resolved transient absorption spectroscopies. The TTET of the intramolecular/hydrogen bonding/intermolecular systems were compared through nanosecond transient absorption spectroscopy. The TTET process of the hydrogen bonding system is faster and more efficient (kTTET = 6.9 × 104 s–1, ?TTET = 94.0%) than intermolecular triplet energy transfer (kTTET = 6.0 × 104 s–1, ?TTET = 90.9%), but slower and less efficient than intramolecular triplet energy transfer (kTTET > 108 s–1). These results are valuable for designing self-assembly triplet photosensitizers and for the study of the TTET process of hydrogen bonding systems

    Risk management in liner ship fleet deployment: a joint chance constrained programming model

    Get PDF
    This paper provides a tangible methodology to deal with the liner ship fleet deployment problem aiming at minimizing the total cost while maintaining a service level under uncertain container demand. The problem is first formulated as a joint chance constrained programming model, and the sample average approximation method and mixed-integer programming are used to deal with it. Finally, a numerical example of a liner shipping network is carried out to verify the applicability of the proposed model and solution algorithm. It is found that the service level has significant effect on the total cost

    Discovery of two new hypervelocity stars from the LAMOST spectroscopic surveys

    Full text link
    We report the discovery of two new unbound hypervelocity stars (HVSs) from the LAMOST spectroscopic surveys. They are respectively a B2V type star of ~ 7 M_{\rm \odot} with a Galactic rest-frame radial velocity of 502 km/s at a Galactocentric radius of ~ 21 kpc and a B7V type star of ~ 4 M_{\rm \odot} with a Galactic rest-frame radial velocity of 408 km/s at a Galactocentric radius of ~ 30 kpc. The origins of the two HVSs are not clear given their currently poorly measured proper motions. However, the future data releases of Gaia should provide proper motion measurements accurate enough to solve this problem. The ongoing LAMOST spectroscopic surveys are expected to yield more HVSs to form a statistical sample, providing vital constraint on understanding the nature of HVSs and their ejection mechanisms.Comment: 5 pages, 3 figures, 1 table, accepted for publication in ApJ

    Dual-Core Photonic Crystal Fiber for Use in Fiber Filters

    Get PDF
    An asymmetrical dual-core photonic crystal fiber (DC-PCF), which possesses all circular air holes, is proposed. By setting appropriate geometrical parameters, the wavelength-selective coupling property is realized, and a compact optical filter with a short length of 1.83 mm based on the DC-PCF is designed. The spectral transmission characteristics of the filter are investigated by the beam propagation method. The results demonstrate that the optical filter possesses a bandwidth of ∼ 58 nm and small sidelobes. The proposed optical filter could be used in the integrated optical systems

    Definition and Design of Zero Energy Buildings

    Get PDF
    The wide application of renewable energy system (RES) in buildings combined with numerous financial incentives on RES paves the way for future zero energy buildings (ZEB). Although the definition of ZEB still lacks a national building code and international standards, the number of ZEB projects is still increasing worldwide which seems to be the pioneer ZEB buildings. However, due to the intermittency of the renewable resources, various uncertain parameters, and dynamic electricity price from the grid, how to select the renewable energy system for buildings is one of the challenges and therefore becomes an extensive concern for both researchers and designers. In addition, questions like how to achieve the target of zero energy for different types of buildings, should the building be designed as an independent ZEB or a group of buildings to be a ZEB cluster, and how to make building owners actively involved in installing enough RES for the building are still on the air. This chapter will present a comprehensive view on several key issues related with ZEB, that is, definition, evaluation criteria, design method, and uncertainty analysis, and the penalty cost scheme is also proposed for consideration as one policy to assist the promotion of ZEB

    A topological transition-induced giant transverse thermoelectric effect in polycrystalline Dirac semimetal Mg3Bi2

    Full text link
    To achieve thermoelectric energy conversion, a large transverse thermoelectric effect in topological materials is crucial. However, the general relationship between topological electronic structures and transverse thermoelectric effect remains unclear, restricting the rational design of novel transverse thermoelectric materials. Herein, we demonstrate a topological transition-induced giant transverse thermoelectric effect in polycrystalline Mn-doped Mg3+{\delta}Bi2 material, which has a competitively large transverse thermopower (617 uV/K), power factor (20393 uWm-1K-2), magnetoresistance (16600%), and electronic mobility (35280cm2V-1S-1). The high performance is triggered by the modulation of chemical pressure and disorder effects in the presence of Mn doping, which induces the transition from a topological insulator to a Dirac semimetal. The high-performance polycrystalline Mn-doped Mg3+{\delta} Bi2 described in this work robustly boosts transverse thermoelectric effect through topological phase transition, paving a new avenue for the material design of transverse thermoelectricity
    corecore