188 research outputs found

    RNA-seq liver transcriptome analysis reveals an activated MHC-I pathway and an inhibited MHC-II pathway at the early stage of vaccine immunization in zebrafish

    Get PDF
    BACKGROUND: Zebrafish (Danio rerio) is a prominent vertebrate model of human development and pathogenic disease and has recently been utilized to study teleost immune responses to infectious agents threatening the aquaculture industry. In this work, to clarify the host immune mechanisms underlying the protective effects of a putative vaccine and improve its immunogenicity in the future efforts, high-throughput RNA sequencing technology was used to investigate the immunization-related gene expression patterns of zebrafish immunized with Edwardsiella tarda live attenuated vaccine. RESULTS: Average reads of 18.13 million and 14.27 million were obtained from livers of zebrafish immunized with phosphate buffered saline (mock) and E. tarda vaccine (WED), respectively. The reads were annotated with the Ensembl zebrafish database before differential expressed genes sequencing (DESeq) comparative analysis, which identified 4565 significantly differentially expressed genes (2186 up-regulated and 2379 down-regulated in WED; p<0.05). Among those, functional classifications were found in the Gene Ontology database for 3891 and in the Kyoto Encyclopedia of Genes and Genomes database for 3467. Several pathways involved in acute phase response, complement activation, immune/defense response, and antigen processing and presentation were remarkably affected at the early stage of WED immunization. Further qPCR analysis confirmed that the genes encoding the factors involved in major histocompatibility complex (MHC)-I processing pathway were up-regulated, while those involved in MHC-II pathway were down-regulated. CONCLUSION: These data provided insights into the molecular mechanisms underlying zebrafish immune response to WED immunization and might aid future studies to develop a highly immunogenic vaccine against gram-negative bacteria in teleosts

    Identification and functional characterization of EseH, a new effector of the type III secretion system of Edwardsiella piscicida

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135199/1/cmi12638_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135199/2/cmi12638.pd

    Changes in the bacterial communities of Harmonia axyridis (Coleoptera: Coccinellidae) in response to long-term cold storage and progressive loss of egg viability in cold-stored beetles

    Get PDF
    Bacteria have a profound influence on life history and reproduction of numerous insects, while the associations between hosts and bacteria are substantially influenced by environmental pressures. Cold storage is crucial for extending the shelf life of insects used as tools for biological control, but mostly causes detrimental effects. In this study, we observed a great decrease in egg hatch rate of cold-stored Harmonia axyridis during the later oviposition periods. Furthermore, most eggs produced by their F1 offspring exhibited complete loss of hatchability. We hypothesized that long-term exposure to cold may greatly alter the bacterial community within the reproductive tracts of H. axyridis, which may be an important factor contributing to the loss of egg viability. Through sequencing of the 16S rRNA gene, we discovered considerable changes in the bacterial structure within the reproductive tracts of female cold-stored beetles (LCS_F) compared to non-stored beetles (Control_F), with a notable increase in unclassified_f_Enterobacteriaceae in LCS_F. Furthermore, in accordance with the change of egg hatchability, we observed a slight variation in the microbial community of eggs produced by cold-stored beetles in early (Egg_E) and later (Egg_L) oviposition periods as well as in eggs produced by their F1 offspring (Egg_F1). Functional predictions of the microbial communities revealed a significant decrease in the relative abundance of substance dependence pathway in LCS_F. Moreover, this pathway exhibited relatively lower abundance levels in both Egg_L and Egg_F1 compared to Egg_E. These findings validate that long-term cold storage can greatly modify the bacterial composition within H. axyridis, thereby expanding our understanding of the intricate bacteria-insect host interactions

    Silver spoon effects of hatching order in an asynchronous hatching bird

    Get PDF
    The silver spoon hypothesis proposes that individuals which develop under favourable conditions will gain fitness benefits throughout their lifetime. Hatching order may create a considerable size hierarchy within a brood and lead to earlier-hatched nestlings having a competitive advantage over their siblings, which has been illustrated in some studies. However, there have been few explorations into the effect on subsequent generations. Here, using a 15-year-long study, we investigated the long-term fitness consequence of hatching order in the endangered crested ibis, Nipponia nippon, a species with complete hatching asynchrony. In this study, we found strong support for silver spoon effects acting on hatching order. Compared to later-hatched nestlings, first-hatched nestlings begin reproduction at an earlier age, have higher adult survival rates, possess a longer breeding life span and achieve higher lifetime reproductive success. Interestingly, we found carry-over effects of hatching order into the next generation. Nestlings which hatched earlier and became breeders in turn also produced nestlings with larger tarsus and better body condition. Additionally, we found a positive correlation among life-history traits in crested ibis. Individuals which started reproduction at a younger age were shown to possess a longer breeding life span. And the annual brood size increased with an individual’s breeding life span. This suggests that the earlier-hatched nestlings are of better quality and the ‘silver spoon’ effects of hatching order cover all life-history stages and next generation effects

    The Unified Equation of State for Dark Matter and Dark Energy

    Full text link
    We assume that dark matter and dark energy satisfy the unified equation of state: p=B(z)ρp=B(z)\rho, with p=pdEp=p_{dE}, ρ=ρdm+ρdE\rho=\rho_{dm}+\rho_{dE}, where the pressure of dark matter pdm=0p_{dm}=0 has been taken into account. A special function B=−A(1+z)αB=-\frac{A}{(1+z)^{\alpha}} is presented, which can well describe the evolution of the universe. In this model, the universe will end up with a Big Rip. By further simple analysis, we know other choices of the function BB can also describe the universe but lead to a different doomsday.Comment: 7 pages, 3 figures, ws-mpla.cls, accepted by MPL

    The Real Scalar Field in Schwarzschild-de Sitter Spacetime

    Full text link
    In this paper, the real scalar field equation in Schwarzschild-de Sitter spacetime is solved numerically with high precision. A method called polynomial approximation is introduced to derive the relation between the tortoise coordinate x and the radius r. This method is di&#64256;erent from the tangent approximation [1] and leads to more accurate result. The Nariai black hole is then discussed in details. We find that the wave function is harmonic only near the horizons as I. Brevik and B. Simonsen [1] found. Howerver the wave function is not harmonic in the region of the potential peak, with amplitude increasing instead. Furthermore, we also find that, when cosmological constant decreases, the potential peak increases, and the maximum wave amplitude increases.Comment: 11 pages, 5 figures. To be published in volume 35(2003), G.R.
    • 

    corecore