5,421 research outputs found

    An improvement of isochronous mass spectrometry: Velocity measurements using two time-of-flight detectors

    Full text link
    Isochronous mass spectrometry (IMS) in storage rings is a powerful tool for mass measurements of exotic nuclei with very short half-lives down to several tens of microseconds, using a multicomponent secondary beam separated in-flight without cooling. However, the inevitable momentum spread of secondary ions limits the precision of nuclear masses determined by using IMS. Therefore, the momentum measurement in addition to the revolution period of stored ions is crucial to reduce the influence of the momentum spread on the standard deviation of the revolution period, which would lead to a much improved mass resolving power of IMS. One of the proposals to upgrade IMS is that the velocity of secondary ions could be directly measured by using two time-of-flight (double TOF) detectors installed in a straight section of a storage ring. In this paper, we outline the principle of IMS with double TOF detectors and the method to correct the momentum spread of stored ions.Comment: Accepted by Nuclear Inst. and Methods in Physics Research,

    The TianQin project: current progress on science and technology (Corrigendum to vol 2020, ptaa114, 2020)

    Get PDF
    TianQin is a planned space-based gravitational wave (GW) observatory consisting of three earth orbiting satellites with an orbital radius of about 105 km10^5~{\rm km}. The satellites will form a equilateral triangle constellation the plane of which is nearly perpendicular to the ecliptic plane. TianQin aims to detect GWs between 104 Hz10^{-4}~{\rm Hz} and 1 Hz1~{\rm Hz} that can be generated by a wide variety of important astrophysical and cosmological sources, including the inspiral of Galactic ultra-compact binaries, the inspiral of stellar-mass black hole binaries, extreme mass ratio inspirals, the merger of massive black hole binaries, and possibly the energetic processes in the very early universe or exotic sources such as cosmic strings. In order to start science operations around 2035, a roadmap called the 0123 plan is being used to bring the key technologies of TianQin to maturity, supported by the construction of a series of research facilities on the ground. Two major projects of the 0123 plan are being carried out. In this process, the team has created a new generation 17 cm17~{\rm cm} single-body hollow corner-cube retro-reflector which has been launched with the QueQiao satellite on 21 May 2018; a new laser ranging station equipped with a 1.2 m1.2~{\rm m} telescope has been constructed and the station has successfully ranged to all the five retro-reflectors on the Moon; and the TianQin-1 experimental satellite has been launched on 20 December 2019 and the first round result shows that the satellite has exceeded all of its mission requirements

    Trends in Notifiable Infectious Diseases in China: Implications for Surveillance and Population Health Policy

    Get PDF
    This study aimed to analyse trends in notifiable infectious diseases in China, in their historical context. Both English and Chinese literature was searched and diseases were categorised according to the type of disease or transmission route. Temporal trends of morbidity and mortality rates were calculated for eight major infectious diseases types. Strong government commitment to public health responses and improvements in quality of life has led to the eradication or containment of a wide range of infectious diseases in China. The overall infectious diseases burden experienced a dramatic drop during 1975–1995, but since then, it reverted and maintained a gradual upward trend to date. Most notifiable diseases are contained at a low endemic level; however, local small-scale outbreaks remain common. Tuberculosis, as a bacterial infection, has re-emerged since the 1990s and has become prevalent in the country. Sexually transmitted infections are in a rapid, exponential growth phase, spreading from core groups to the general population. Together human immunodeficiency virus (HIV), they account for 39% of all death cases due to infectious diseases in China in 2008. Zoonotic infections, such as severe acute respiratory syndrome (SARS), rabies and influenza, pose constant threats to Chinese residents and remain the most deadly disease type among the infected individuals. Therefore, second-generation surveillance of behavioural risks or vectors associated with pathogen transmission should be scaled up. It is necessary to implement public health interventions that target HIV and relevant coinfections, address transmission associated with highly mobile populations, and reduce the risk of cross-species transmission of zoonotic pathogens

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un

    Identification of the Lowest T=2, Jπ=0+ Isobaric Analog State in Co52 and Its Impact on the Understanding of β-Decay Properties of Ni52

    Get PDF
    Masses of 52g,52mCo were measured for the first time with an accuracy of ∼10  keV, an unprecedented precision reached for short-lived nuclei in the isochronous mass spectrometry. Combining our results with the previous β−γ measurements of 52Ni, the T=2, Jπ=0+ isobaric analog state (IAS) in 52Co was newly assigned, questioning the conventional identification of IASs from the β-delayed proton emissions. Using our energy of the IAS in 52Co, the masses of the T=2 multiplet fit well into the isobaric multiplet mass equation. We find that the IAS in 52Co decays predominantly via γ transitions while the proton emission is negligibly small. According to our large-scale shell model calculations, this phenomenon has been interpreted to be due to very low isospin mixing in the IAS

    Generation, Annotation and Analysis of First Large-Scale Expressed Sequence Tags from Developing Fiber of Gossypium barbadense L

    Get PDF
    BACKGROUND: Cotton fiber is the world's leading natural fiber used in the manufacture of textiles. Gossypium is also the model plant in the study of polyploidization, evolution, cell elongation, cell wall development, and cellulose biosynthesis. G. barbadense L. is an ideal candidate for providing new genetic variations useful to improve fiber quality for its superior properties. However, little is known about fiber development mechanisms of G. barbadense and only a few molecular resources are available in GenBank. METHODOLOGY AND PRINCIPAL FINDINGS: In total, 10,979 high-quality expressed sequence tags (ESTs) were generated from a normalized fiber cDNA library of G. barbadense. The ESTs were clustered and assembled into 5852 unigenes, consisting of 1492 contigs and 4360 singletons. The blastx result showed 2165 unigenes with significant similarity to known genes and 2687 unigenes with significant similarity to genes of predicted proteins. Functional classification revealed that unigenes were abundant in the functions of binding, catalytic activity, and metabolic pathways of carbohydrate, amino acid, energy, and lipids. The function motif/domain-related cytoskeleton and redox homeostasis were enriched. Among the 5852 unigenes, 282 and 736 unigenes were identified as potential cell wall biosynthesis and transcription factors, respectively. Furthermore, the relationships among cotton species or between cotton and other model plant systems were analyzed. Some putative species-specific unigenes of G. barbadense were highlighted. CONCLUSIONS/SIGNIFICANCE: The ESTs generated in this study are from the first large-scale EST project for G. barbadense and significantly enhance the number of G. barbadense ESTs in public databases. This knowledge will contribute to cotton improvements by studying fiber development mechanisms of G. barbadense, establishing a breeding program using marker-assisted selection, and discovering candidate genes related to important agronomic traits of cotton through oligonucleotide array. Our work will also provide important resources for comparative genomics, polyploidization, and genome evolution among Gossypium species
    corecore