131 research outputs found

    A Security Framework for Wireless Sensor Networks Utilizing a Unique Session Key

    Get PDF
    Key management is a core mechanism to ensure the security of applications and network services in wireless sensor networks. It includes two aspects: key distribution and key revocation. Many key management protocols have been specifically designed for wireless sensor networks. However, most of the key management protocols focus on the establishment of the required keys or the removal of the compromised keys. The design of these key management protocols does not consider the support of higher level security applications. When the applications are integrated later in sensor networks, new mechanisms must be designed. In this paper, we propose a security framework, uKeying, for wireless sensor networks. This framework can be easily extended to support many security applications. It includes three components: a security mechanism to provide secrecy for communications in sensor networks, an efficient session key distribution scheme, and a centralized key revocation scheme. The proposed framework does not depend on a specific key distribution scheme and can be used to support many security applications, such as secure group communications. Our analysis shows that the framework is secure, efficient, and extensible. The simulation and results also reveal for the first time that a centralized key revocation scheme can also attain a high efficiency

    Serological analysis of allergic components of house dust mite provides more insight in epidemiological characteristics and clinical symptom development in North China

    Get PDF
    BackgroundHouse dust mite (HDM) is the most common airborne source causing complex allergy symptoms. There are geographic differences in the allergen molecule sensitization profiles. Serological testing with allergen components may provide more clues for diagnosis and clinical management.ObjectiveThis study aims to investigate the sensitization profile of eight HDM allergen components in a large number of patients enrolled in the clinic and to analyze the relation of gender, age, and clinical symptoms in North China.MethodsThe 548 serum samples of HDM-allergic patients (ImmunoCAP® d1 or d2 IgE ≥0.35) were collected in Beijing City and divided in four different age groups and three allergic symptoms. The specific IgE of HDM allergenic components, Der p 1/Der f 1, Der p 2/Der f 2, Der p 7, Der p 10, Der p 21, and Der p 23, was measured using the micro-arrayed allergen test kit developed by Hangzhou Zheda Dixun Biological Gene Engineering Co., Ltd. The new system was validated by comparing to single-component Der p 1, Der p 2, and Der p 23 tests by ImmunoCAP in 39 sera. The epidemiological study of these IgE profiles and the relation to age and clinical phenotypes were analyzed.ResultsA greater proportion of male patients was in the younger age groups, while more female patients were in the adult groups. Both the sIgE levels and the positive rates (approximately 60%) against Der p 1/Der f 1 and Der p 2/Der f 2 were higher than for the Der p 7, Der p 10, and Der p 21 components (below 25%). The Der f 1 and Der p 2 positive rates were higher in 2–12-year-old children. The Der p 2 and Der f 2 IgE levels and positive rates were higher in the allergic rhinitis group. The positive rates of Der p 10 increased significantly with age. Der p 21 is relevant in allergic dermatitis symptom, while Der p 23 contributes to asthma development.ConclusionHDM groups 1 and 2 were the major sensitizing allergens, with group 2 being the most important component relevant to respiratory symptoms in North China. The Der p 10 sensitization tends to increase with age. Der p 21 and Der p 23 might be associated with the development of allergic skin disease and asthma, respectively. Multiple allergen sensitizations increased the risk of allergic asthma

    Study of the Effect of Mold Corner Shape on the Initial Solidification Behavior of Molten Steel Using Mold Simulator

    Get PDF
    The chamfered mold with a typical corner shape (angle between the chamfered face and hot face is 45 deg) was applied to the mold simulator study in this paper, and the results were compared with the previous results from a well-developed right-angle mold simulator system. The results suggested that the designed chamfered structure would increase the thermal resistance and weaken the two-dimensional heat transfer around the mold corner, causing the homogeneity of the mold surface temperatures and heat fluxes. In addition, the chamfered structure can decrease the fluctuation of the steel level and the liquid slag flow around the meniscus at mold corner. The cooling intensities at different longitudinal sections of shell are close to each other due to the similar time-average solidification factors, which are 2.392 mm/s1/2 (section A-A: chamfered center), 2.372 mm/s1/2 (section B-B: 135 deg corner), and 2.380 mm/s1/2 (section D-D: face), respectively. For the same oscillation mark (OM), the heights of OM roots at different positions (profile L1 (face), profile L2 (135 deg corner), and profile L3 (chamfered center)) are very close to each other. The average value of height difference (HD) between two OMs roots for L1 and L2 is 0.22 mm, and for L2 and L3 is 0.38 mm. Finally, with the help of metallographic examination, the shapes of different hooks were also discussed

    An Efficient Scheme for Removing Compromised Sensor Nodes from Wireless Sensor Networks

    Get PDF
    Key management is a core mechanism to ensure the security of applications and network services in wireless sensor networks. It includes two aspects: key distribution and key revocation. Key distribution has been extensively studied in the context of sensor networks. However, key revocation has received relatively little attention. Existing key revocation schemes can be divided into two categories: centralized key revocation scheme and distributed key revocation scheme. In this paper, we first review and summarize the current key revocation schemes for sensor networks. Then, we present an efficient scheme of removing compromised sensor nodes from wireless sensor networks. Unlike most sensor node removal schemes focusing on removing the compromised keys, the proposed scheme, KeyRev, uses key update techniques to obsolesce the keys owned by the compromised sensor nodes and thus remove the nodes from the network. Our analyses show that the KeyRev scheme is secure inspite of not removing the pre-distributed key materials at com- promised sensor nodes. Simulation results also indicate that the KeyRev scheme is scalable and performs very well compared with other key revocation schemes in wireless sensor networks

    Propranolol Participates in the Treatment of Infantile Hemangioma by Inhibiting HUVECs Proliferation, Migration, Invasion, and Tube Formation

    No full text
    Objective. Infantile hemangiomas (IHs) are the most common benign tumors in infancy. The purpose of this study was to study the effects of propranolol on the function of human umbilical vein endothelial cells (HUVECs), in order to preliminarily elucidate the mechanism of propranolol in the treatment of IHs. Methods. HUVECs were treated with different concentrations of propranolol (30 μM, 60 μM, 90 μM, and 120 μM) with or without VEGF. Their proliferation, migration, invasion, adhesion, and tube formation ability were tested by using CCK-8, wound healing assay, transwell, cell adhesion assay, and tube formation assay. The expressions of HUVECs angiogenesis signaling molecules pERK/ERK, pAKT/AKT, p-mTOR/mTOR, and pFAK/FAK were detected by Western blot. Results. Compared with the control group, propranolol could significantly inhibit the proliferation, migration, invasion, adhesion, and tube formation of HUVECs. Further studies showed that it could not only inhibit the migration, invasion, and tube formation ability of HUVECs after VEGF induction but also inhibit the phosphorylated protein expressions of angiogenesis-related signaling molecules like AKT, mTOR, ERK, and FAK in HUVECs, with a concentration-dependent inhibitory effect. Conclusion. Propranolol can inhibit the proliferation, migration, invasion, adhesion, and tube formation of hemangioma endothelial cells; block VEGF-mediated angiogenesis signaling pathway; suppress the expressions of downstream angiogenesis-related signaling molecules; and ultimately achieve the effect of treatment of IHs

    Structural and dynamic evolution of the amphipathic N-terminus diversifies enzyme thermostability in the glycoside hydrolase family 12

    No full text
    Understanding the molecular mechanism underlying protein thermostability is central to the process of efficiently engineering thermostable cellulases, which can provide potential advantages in accelerating the conversion of biomass into clean biofuels. Here, we explored the general factors that diversify enzyme thermostability in the glycoside hydrolase family 12 (GH12) using comparative molecular dynamics (MD) simulations coupled to a bioinformatics approach. The results indicated that protein stability is not equally distributed over the whole structure: the N-terminus is the most thermal-sensitive region of the enzymes with a beta-sandwich architecture and it tends to lose its secondary structure during the course of protein unfolding. Furthermore, we found that the total interaction energy within the N-terminus is appreciably correlated with enzyme thermostability. Interestingly, the internal interactions within the N-terminus are organized in a special amphipathic pattern in which a hydrophobic packing cluster and a hydrogen bonding cluster lie at the two ends of the N-terminus. Finally, bioinformatics analysis demonstrated that the amphipathic pattern is highly conserved in GH12 and besides that, the evolution of the amino acids in the N-terminal region is an inherent mechanism underlying the diversity of enzyme thermostability. Taken together, our results demonstrate that the N-terminus is generally the structure that determines enzyme thermostability in GH12, and thereby it is also an ideal engineering target. The dynameomics study of a protein family can give a general view of protein functions, which will offer a wide range of applications in future protein engineering.</p

    Az MTA Könyvtára 1950 előtti müncheni rendszerű betűrendes katalógusa. könyvek_375_REE-REG

    Get PDF
    The security of the two party Diffie-Hellman key exchange protocol is currently based on the discrete logarithm problem (DLP). However, it can also be built upon the elliptic curve discrete logarithm problem (ECDLP). Most proposed secure group communication schemes employ the DLP-based Diffie-Hellman protocol. This paper proposes the ECDLP-based Diffie-Hellman protocols for secure group communication and evaluates their performance on wireless ad hoc networks. The proposed schemes are compared at the same security level with DLP-based group protocols under different channel conditions. Our experiments and analysis show that the Tree-based Group Elliptic Curve Diffie-Hellman (TGECDH) protocol is the best in overall performance for secure group communication among the four schemes discussed in the paper. Low communication overhead, relatively low computation load and short packets are the main reasons for the good performance of the TGECDH protocol
    • …
    corecore