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Key management is a core mechanism to ensure the security of applications and network services
in wireless sensor networks. It includes two aspects: key distribution and key revocation. Key
distribution has been extensively studied in the context of sensor networks. However, key revoca-
tion has received relatively little attention. Existing key revocation schemes can be divided into
two categories: centralized key revocation scheme and distributed key revocation scheme. In this
paper, we first review and summarize the current key revocation schemes for sensor networks.
Then, we present an efficient scheme of removing compromised sensor nodes from wireless sensor
networks. Unlike most sensor node removal schemes focusing on removing the compromised keys,
the proposed scheme, KeyRev, uses key update techniques to obsolesce the keys owned by the
compromised sensor nodes and thus remove the nodes from the network. Our analyses show that
the KeyRev scheme is secure inspite of not removing the pre-distributed key materials at com-
promised sensor nodes. Simulation results also indicate that the KeyRev scheme is scalable and
performs very well compared with other key revocation schemes in wireless sensor networks.
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1. INTRODUCTION

Wireless sensor networks (WSNs) are promising solutions for many applications
and security is an essential requirement of WSNs [Wang et al. 2006]. Among all
security issues in WSNs, key management is a core mechanism to ensure the security
of applications and network services in WSNs.

The goal of key management is to establish the required keys between sensor
nodes which exchange data. A key management scheme includes two aspects: key
distribution and key revocation. Key distribution refers to the task of distribut-
ing secret keys to sensor nodes to provide communication secrecy and authenticity.
Key revocation refers to the task of securely removing keys which are known to be
compromised. Key distribution has been exclusively studied under the constraints
on computation and power consumption in sensor networks [Zhu et al. 2003; Es-
chenauer and Gligor 2002; Chan et al. 2003]. However, key revocation has received
relatively little attention.

Because sensor nodes in WSNs may be deployed in hostile or insecure environ-
ments, the security of sensor nodes must be considered. In case a sensor node
is captured or compromised, the sensor node must be removed securely from the
network. The problem of sensor node removal is usually reduced to that of key re-
vocation [Chan et al. 2003; Chan et al. 2005]. By revoking all of the keys belonging
to a known compromised sensor node, the node can be removed from the network.

Most of the proposed key management schemes depend on some key materials
being pre-distributed in the sensor nodes. These pre-distributed key materials
might include an initial key shared by all sensor nodes [Zhu et al. 2003], a pairwise
key shared between the base station and the sensor node [Eschenauer and Gligor
2002], or a key ring consisting of certain number of keys to be used in the future
[Eschenauer and Gligor 2002; Chan et al. 2003]. The keys for secure communication,
for example, pairwise keys [Eschenauer and Gligor 2002], path keys [Eschenauer and
Gligor 2002], cluster keys [Zhu et al. 2003] used by sensor nodes are set up based
on those pre-distributed materials in the bootstrap stage. When a sensor node is
compromised, the keys set up on the fly and the pre-distributed materials must be
revoked.

Revocation attacks must be considered in designing a revocation scheme. A
revocation attack is a specific attack in which an adversary uses the node revoca-
tion protocol to selectively revoke uncompromised sensors from the network. Since
compromised sensor nodes may act as an adversary’s surrogates within a revocation
protocol and subvert the execution of the revocation protocol [Chan et al. 2005],
the resistance to compromised sensors must be evaluated in a revocation protocol.
Further, after compromised sensors are removed from the network, new sensors
might be re-deployed to replace those compromised sensors. The node addition
problem must be considered. The node addition problem is usually reduced to the
key distribution problem. In this paper, we focus on the key revocation issues.

A few schemes [Eschenauer and Gligor 2002; Chan et al. 2003; Chan et al. 2005]
have been proposed to address the key revocation problem in WSNs. However,
these schemes incur various difficulties when used in sensor networks. For example,
the centralized key revocation scheme proposed in [Eschenauer and Gligor 2002]
requires a signature key distributed in the non-revoked sensor nodes. However,
ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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the signature key can only be distributed by unicasting which causes severe perfor-
mance issues in large scale sensor networks. The distributed key revocation schemes
proposed in [Chan et al. 2003; Chan et al. 2005] are based on some strong assump-
tions such as each node knowing its neighboring nodes before the sensor network
is deployed. These assumptions are hard to satisfy. Thus, designing a new efficient
scheme of removing compromised sensor nodes from wireless sensor networks is
highly desirable.

In this paper, we present an efficient scheme, KeyRev, to remove compromised
sensor nodes. The KeyRev scheme was first proposed in [Wang et al. 2007]. This
paper is a significant improvement of the previous paper. First, we review and
summarize the distributed key revocation scheme proposed in [Chan et al. 2003;
Chan et al. 2005]. Second, we analyze and evaluate for the first time the distributed
key revocation scheme in wireless sensor networks. Our analyses and simulation
results reveal that the centralized key revocation scheme, which had been believed
inefficient before, can also attain high efficiency in sensor networks.

Unlike most proposed key revocation schemes focusing on removing the compro-
mised keys, we propose to use key update techniques to obsolesce the keys owned by
the compromised sensor nodes and thus remove the nodes from the network. The
proposed scheme depends on a unique key shared by all nodes in the network and
the unique key is distributed to the network using an efficient group communication
scheme [Liu et al. 2003]. In addition, our proposed scheme does not depend on any
specific key distribution schemes and thus, the KeyRev scheme can be extended
for implementation with other key distribution schemes, for example, the schemes
proposed in [Chan et al. 2005; Cametepe and Yener 2004].

The KeyRev scheme is classified into the centralized key revocation schemes in
this paper. However, unlike the key revocation schemes in [Eschenauer and Gligor
2002; Chan et al. 2003] which try to remove the keys shared with the compromised
sensor nodes, there are really no keys to be removed from the sensor nodes in
the KeyRev scheme. The sensor node removal problem is reduced to a key update
problem in this paper. In the remainder of this paper, without specific explanation,
the KeyRev scheme is also called a key revocation scheme.

Our contributions in this paper include the following:

(1) We present a novel scheme of removing compromised sensor nodes from wireless
sensor networks utilizing key update techniques.

(2) We analyze and evaluate the performance of the distributed key revocation
scheme in wireless sensor networks for the first time.

(3) Simulation results reveal that the centralized key revocation scheme can also
attain high efficiency in wireless sensor networks.

Our analyses and simulation results show that the proposed scheme, KeyRev, is
secure and efficient in computation, communication and storage usage. Simulation
results also indicate that the KeyRev scheme is scalable and performs very well
compared with other revocation schemes.

The remainder of this paper is organized as follows: Section 2 discusses the related
work. Section 3 presents our proposed key revocation scheme. The security and
performance analyses are presented in Section 4, and the simulation experiments
and results in Section 5. Section 6 concludes the paper.

ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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2. RELATED WORK

As discussed before, key management includes two aspects: key distribution and key
revocation. Many key distribution schemes have been proposed in sensor networks.
According to the network structure, the schemes can be divided into centralized key
distribution schemes [Pietro et al. 2003] and distributed key distribution schemes
[Eschenauer and Gligor 2002; Du et al. 2004]. According to the probability of
key sharing between a pair of sensor nodes, the key distribution schemes can be
classified into deterministic approaches [Zhu et al. 2003; Cametepe and Yener 2004]
and probabilistic approaches [Eschenauer and Gligor 2002; Du et al. 2004]. An
investigation of key distribution schemes for WSNs can be found in [Wang et al.
2006; Camtepe and Yener 2005]. In this paper, we focus on the key revocation
problem.

Key revocation refers to the task of securely removing keys which are known to
be compromised. To detect a compromised sensor, intrusion detection techniques
are employed. Intrusion detection is out of the scope of this paper. We assume
that there are some methods [Zhu et al. 2004; Ye et al. 2004; Wang et al. 2003] for
a base station to detect a compromised sensor node. Another issue which must be
considered is reconfiguration. The topology of the WSN needs to be rebuilt after the
compromised sensors are removed. Sensors might be re-deployed to replace those
compromised sensors. The rest of the section reviews several known key revocation
schemes in WSNs.

Recent work conducted on key revocation for WSNs include [Eschenauer and
Gligor 2002; Chan et al. 2003; Chan et al. 2005; Wang et al. 2007; Zhang et al. 2005]
and no other schemes have been reported to date. These key revocation schemes can
be divided into two categories: the centralized key revocation schemes [Eschenauer
and Gligor 2002; Wang et al. 2007; Zhang et al. 2005] and the distributed key
revocation schemes [Chan et al. 2003; Chan et al. 2005]. We discuss these in turn
below.

2.1 Centralized key revocation scheme

In centralized key revocation scheme, a centralized authority (base station) is used
to revoke compromised sensors [Eschenauer and Gligor 2002]. Eschenauer and
Gligor presented a key management scheme for WSNs in [Eschenauer and Gligor
2002]. This scheme, which is called the basic random key scheme in this paper, is a
centralized key revocation scheme. Before describing the key revocation scheme, we
first introduce the key distribution scheme which will be used later to demonstrate
how to revoke the compromised key materials in our scheme.

The key distribution scheme consists of three phases: key pre-distribution, shared-
key discovery, and path key establishment.

In the key pre-distribution phase, each sensor is equipped with a key ring held
in the memory. The key ring consists of k keys which are randomly drawn from a
large pool of P keys. The association information of the key identifiers in the key
ring and sensor identifier are also stored at the base station. Further, the authors
assumed that each sensor i shares a pairwise key Kci with the base station.

In the shared key discovery phase, each sensor discovers its neighbors within
wireless communication range with which it shares keys. Two methods to accom-
ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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plish this are suggested in [Eschenauer and Gligor 2002]. The simplest method is
for each node to broadcast a list of identifiers of the keys in its key ring in plain
text allowing neighboring nodes to check whether they share a key. However, an
adversary may observe the key-sharing patterns among sensors in this way. The
second method uses the challenge-response technique to hide key-sharing patterns
among nodes from an adversary. For every key Ki on a key ring, each node could
broadcast a list 〈α, EKi

(α)〉, i = 1, ..., k where α is a challenge. The decryption of
EKi(α) with the proper key by a recipient would reveal the challenge and establish
a shared key with the broadcasting node.

Finally, in the path-key establishment phase, a path-key is assigned between
sensor nodes which are within wireless communication range but do not share a
key at the end of the second phase.

If a node is compromised, the base station can send a message to all other sensors
to revoke the compromised node’s key ring. The revocation scheme in [Eschenauer
and Gligor 2002] can be divided into three phases: signature key distribution, key
revocation and link reconfiguration.

In the signature key distribution phase, the base station generates a signature
key Ke and unicasts it to each node by encrypting it with a pairwise key Kci shared
by the base station with the i-th sensor node.

In the key revocation phase, the base station broadcasts a single message con-
taining a list of key identifiers for the key ring to be revoked signed by the signature
key. Each sensor verifiers the signature of the key revocation message, locates those
identifiers in its key ring, and removes the corresponding keys.

Once the keys are removed from the key rings, some links may disappear, and the
affected nodes need to reconfigure those links by restarting the shared-key discovery,
and possibly the path-key establishment, phases.

The key revocation scheme, referred to as EsRev scheme, requires n unicast
messages and one broadcast message. In a large scale sensor network, distributing
the signature key might be a problem. Pre-distributing the signature key might be
possible; however, once the signature key is compromised, the adversary could use
the signature key to duplicate the revocation messages from the base station.

Zhang et al. proposed a location-based revocation scheme utilizing multiple re-
vocation messages in [Zhang et al. 2005]. When the revocation area is large or
complicated, the revocation area can be divided into sub-areas. For each sub-area,
a revocation message is sent to a certain node within that area using GPSR pro-
tocol [Karp and Kung 2000], and then the revocation message is multicasted to
the remaining sub-area. The revocation message includes the identifier of the sen-
sor nodes to be revoked and the scope of the revocation area. On receiving the
message, for each node, if it has received the message before or is outside of the
revocation area, the message is dropped. If the sensor node is within the revocation
area indicated by the revocation message, the sensor node records the identifier of
the revoked sensor node, and rebroadcast the message to its neighboring nodes.
The revocation scheme, referred to as the GPSRRev scheme, is also a centralized
key revocation scheme.

ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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2.2 Distributed key revocation scheme

In a distributed key revocation scheme, no centralized authority is used. Chan et
al. proposed a distributed key revocation scheme for sensor networks in [Chan et al.
2003] and further investigated this scheme in [Chan et al. 2005]. In this distributed
key revocation scheme, a vote is cast and collected among sensor nodes. If the vote
tally against a sensor node exceeds a specified threshold, the sensor node will be
revoked. Chan’s scheme depends on the secret sharing scheme proposed in [Shamir
1979]. The distributed key revocation scheme is described below.

The revocation timeline is divided into sessions. Each sensor has at most stotal

revocation sessions against any target nodes (compromised nodes). Before the
sensor network is deployed, the setup server generates a t degree random polynomial
qAs

(x) = a0+a1x+· · ·+at−1x
t−1 for each session s on sensor node A. For each node

B of A’s participants (a participant of A is a sensor which shares a key with node
A), the setup server loads the revocation vote (qBs

(xABs
), xABs

) from A against B
on node A. This revocation vote is encrypted by a mask MaskABs that B gives to
A. That is, the preloaded data on A against B is EMaskABs

(qBs
(xABs

), xABs
). For

each vote, the setup server also loads the log m authentication hash values for the
Merkle tree with leaves (qBs(xiBs), xiBs) for each node i in B’s participants (a total
of m leaves). The root RB of the Merkle tree is also loaded on A. Finally, the setup
server loads H2qBs , which is the hash of the hash of the revocation polynomial of B
on A. This will allow nonlocal participants (a nonlocal participant of B is a sensor
node which shares a key with B but multi-hops (> 1) away from B) to verify the
authenticity of a revocation decision against B.

In the beginning of each session, the masks are exchanged among neighboring
nodes. The purpose of the mask key is to ensure that each node is only able to
revoke sensors within its immediate neighborhood.

Each revocation session is divided into three states: pending, active and com-
pleted. The pending state indicates that there is no voting occurs in the current
session. When the first vote of the session is cast and received by A, A changes
its state to active. The active state lasts for exactly ∆s time for each node, after
which the node transitions to the completed state for this session, and starts the
pending state for the next session.

When A votes against B during the revocation session s, it decrypts the vote
using B’s mask key MaskABs and broadcasts (qBs(xABs), xABs) along with the
log m Merkle authentication values. This is a local neighborhood broadcast. The
broadcast only needs to go far enough to ensure complete dissemination in the
neighborhood of B. The node receiving the vote verifies the authenticity of the vote
using the Merkle authentication values. The node will disseminate the broadcast
if the verification is successful. When A casts a vote on B, it will vote both in
the current session and on the next session. Voting on the next session occurs
immediately upon completion of the current session.

When A’s state for the session has transited to completed state, it counts the
number of votes it has received when it was in the active state. If A has at least
t revocation votes, then A can use these t points to compute the random t-degree
polynomial qBs using the secret sharing scheme in [Shamir 1979]. From this, A
computes the hash of the polynomial, HqBs . This value is then broadcasted through
ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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the entire network. All participants of B receiving this value can verify it by
computing the hash of the received value. If the verification is successful, the keys
shared with B will be revoked.

Note that Chan’s scheme, referred to as DistRev scheme, is built on some sim-
plifying assumptions; for example, each node knows its neighboring nodes before
deployment. It is hard to satisfy these requirements.

Compared with the centralized key revocation schemes, the distributed key re-
vocation schemes are faster because they require local broadcast and avoid a single
point of failure. However, the distributed key revocation schemes are also more
complex than the centralized key revocation schemes and, hence, more prone to
design error since compromised sensor nodes can participate in the revocation pro-
tocol and attempt to block or circumvent it. In addition, it is also possible to
compromise enough nodes to sabotage the distributed key revocation scheme. For
more detailed information about the distributed key revocation scheme, please refer
to [Chan et al. 2003; Chan et al. 2005].

In the remainder of this paper, we present an efficient scheme, KeyRev, to remove
compromised sensor nodes from wireless sensor networks. We use the following
notation in the remainder of this paper:

—A, B are principals such as communicating nodes.
—KA,B denotes the secret pairwise key shared between A and B.
—MK is the encryption of message M with key K.
—MAC(K, M) denotes the computation of the message authentication code of

message M with key K.
—M1|M2 denotes the concatenation of messages M1 and M2.
—A −→ B denotes that A unicasts a message to B.

3. KEYREV: AN EFFICIENT SCHEME OF REMOVING COMPROMISED SENSORS
FROM WSNS

Unlike most of the proposed key revocation schemes focusing on removing the com-
promised keys, our scheme, KeyRev, uses key update techniques to obsolesce the
keys owned by the compromised sensor nodes and thus remove the nodes from
the network. The KeyRev scheme does not depend on a specified key distribu-
tion scheme. Without loss of generality, we assume that the basic random key
distribution scheme [Eschenauer and Gligor 2002] is used.

3.1 Assumptions of our protocol

We assume that the base station is secure and well protected. The sensor nodes
are not tamper-resistant and thus can be compromised. If a sensor node is com-
promised, the attacker is capable of stealing all the key materials contained within
that node. We also assume that all the sensor nodes are within reach of the base
station. Next, we provide an overview of our scheme.

3.2 Overview

The basic random key distribution scheme establishes two kinds of keys among
sensor nodes: the pairwise keys and the path keys. When a sensor node is compro-
mised, the compromised keys must be revoked so that the compromised keys will

ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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not be chosen again as the new secret keys. Instead of using the pairwise keys and
the path keys directly for the communication secrecy and authenticity, we propose
two kinds of keys for secure communication in the sensor network: the encryp-
tion key and the message authentication code (MAC) key. The encryption key and
the MAC key are generated by a pseudo-random function which is bound to the
pairwise key or the path key, and a session key distributed regularly by the base
station to all the sensor nodes in the network. When the session key is updated,
the encryption key and the MAC key are also changed. A sensor node always uses
the latest encryption key and MAC key to encrypt and sign the outgoing messages
or decrypt and verify the incoming messages. If there is a session key distribution
scheme in which the compromised sensors cannot recover the new session key when
they are revoked, these revoked sensors will be removed from the network because
they cannot derive the new encryption keys and the MAC keys on the next ses-
sion. Although an adversary may retain the pairwise keys and the path keys, the
adversary cannot figure out the encryption keys and the MAC keys because of the
pseudo-random function used. Thus, the key revocation problem is reduced to the
session key update problem.

In the remainder of this section, we first present the KeyRev scheme assuming an
effective session key distribution scheme is used, and then we introduce the session
key distribution scheme.

3.3 KeyRev scheme

The lifetime of a WSN is partitioned into time intervals called sessions. The
duration of sessions can be fixed or dynamic depending on the applications. The
base station is responsible for distributing session keys to the sensor nodes. We use
Kj to denote the j-th session key where j ∈ {1, 2, · · · ,m} and m is the number of
sessions.

We assume that each sensor is uniquely identified by an ID number i, where
i ∈ {1, . . . , n} and n is the largest ID number. Each sensor maintains a list: node
revocation list (NRL). A node revocation list includes all the sensor identifiers which
have been revoked in the network. The revocation list is empty initially and will be
populated as the time goes by. The revocation list is checked for any incoming and
outgoing messages to ensure that only valid sensors are members of the network.
We also assume that the pairwise keys and the path keys have been set up by the
basic random key distribution scheme.

We propose two kinds of keys for secure communication in the sensor network:
the encryption key Kencr and the message authentication code (MAC) key Kmac.
For any message transmitted in the network, authentication, confidentiality, and
integration are required. Let A and B be two entities in a WSN, the complete
message A sends to B is:

A −→ B : {M |Ts}Kencr ,MAC(Kmac, {M |Ts}Kencr )

where M is the message, Ts is the timestamp when sending the message, and
MAC(K, R) denotes the computation of the message authentication code of mes-
sage R with key K.

Let Kj be the current session key and KA,B represent the pairwise key or path
key shared between the sensor nodes A and B. The encryption key and the MAC
ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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key used in session j can be generated as follows:

Kencr = F (MAC(KA,B ,Kj), 1) (1)
Kmac = F (MAC(KA,B ,Kj), 2) (2)

where F (K, x) is a pseudo-random function and x is an integer 1 or 2 for generating
Kencr or Kmac respectively.

The security of the communication between A and B is ensured by the encryption
key Kencr and the MAC key Kmac. Both of them are bound to the session key
and will be updated when the session key is updated. Any message that A sends
to B is encrypted by the encryption key Kencr and signed by the MAC key Kmac.
For any message that B receives from A, B always verifies the message first and
then decrypts it. Further, a sensor node always uses the encryption key and the
MAC key corresponding to the current session key to encrypt and sign the outgoing
messages or decrypt and verify the incoming messages.

If there is a method to stop the compromised sensors from obtaining the new
session keys and thus stop them from deriving Kencr and Kmac, then the compro-
mised sensors can no longer decrypt new messages and authenticate themselves.
For example, if A is compromised and A cannot recover the new session key, then
A cannot derive the new encryption key and the MAC key while B can. Due to
the lack of the proper keys to encrypt and sign the messages, A cannot send any
valid messages to B from that time. Therefore, the sensor node A is removed from
the network.

Next, we introduce the session key distribution scheme used in the KeyRev
scheme.

3.4 Session key distribution scheme

To make the KeyRev scheme work, the session key distribution scheme must satisfy
the following criteria:

(1) The compromised sensors should not be able to obtain the new session keys.
(2) The sensor network is time synchronized so that the current keys can be iden-

tified.

Criterion 2 is easily satisfied. For criterion 1, we derive a simple session key
distribution scheme based on the personal key share distribution scheme in [Liu
et al. 2003]. The session key distribution scheme can be divided into three phases,
viz., setup, broadcast, and session key recovery.

(1) Setup: The setup server randomly picks m 2t-degree masking polynomial,
hj(x) = hj,0 + hj,1x + · · · + hj,2tx

2t, j ∈ {1, 2, · · · ,m}, over a finite field Fq

where q is a sufficiently large prime number. For each sensor node Ai, the
setup server loads the personal secrets, {h1(i), h2(i), · · · , hm(i)}, to the node
A. The setup server also loads the polynomial, hj(x), to the base station. For
each session key Kj , the setup server randomly picks a t-degree polynomial
pj(x) and constructs qj(x) = Kj − pj(x).

(2) Broadcast: Given a set of revoked group members, R = {r1, r2, · · · , rw}, w ≤ t
in session j, the base station distributes the shares of t-degree polynomial pj(x)

ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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and qj(x) to non-revoked sensors via the following broadcast message:

B = {R}
∪ {Pj(x) = gj(x)pj(x) + hj(x)}
∪ {Qj(x) = gj(x)qj(x) + hj(x)}

where the revocation polynomial gj(x) is constructed as gj(x) = (x − r1)(x −
r2) · · · (x− rw).

(3) Session key recovery: If any non-revoked sensor node Ai receives such a broad-
cast message, it evaluates the polynomial Pj(x) and Qj(x) at point i and gets
Pj(i) = gj(i)pj(i) + hj(i) and Qj(i) = gj(i)qj(i) + hj(i). Because Ai knows
hj(i) and gj(i) 6= 0, it can compute pj(i) = Pj(i)−hj(i)

gj(i)
and qj(i) = Qj(i)−hj(i)

gj(i)
.

Ai finally can compute the new session key Kj = pj(i) + qj(i).

The revoked sensors cannot recover pj(i) and qj(i) because gj(i) = 0 and thus
cannot recover the new session key. Without obtaining the new session key, the
revoked sensors cannot derive the encryption key Kencr and the MAC key Kmac

and thus cannot decrypt new messages and authenticate themselves to other sensor
nodes in the network. The compromised sensor nodes can thus be removed.

To demonstrate the session key distribution process, an example is given below.
We consider three sensors with ID numbers 1, 2, and 3 respectively. We assume
sensor 2 is compromised in session 5 and will be revoked in session 6. In the setup
phase, the setup server picks the masking polynomial h6(x) = 1 + x8 for session
6 and each sensor receives a secret h6(1) = 2, h6(2) = 257, and h6(3) = 6562
respectively. Let K6 = 101, p6(x) = 1 + x4 and thus we have q6(x) = 100− x4 and
g6(x) = x− 2. In session 6, the base station broadcasts a message:

B = {2}
∪ {P6(x) = (x− 2)(1 + x4) + 1 + x8}
∪ {Q6(x) = (x− 2)(100− x4) + 1 + x8}

When sensor 1 receives the message, sensor 1 calculates: P6(1) = 0, Q6(1) = −97
and thus p6(1) = 2 and q6(1) = 99. Sensor 1 computes the session key K6 =
p6(1) + q6(1) = 101; Similarly, sensor 3 calculates: P6(3) = 6644, Q6(3) = 6581
and thus p6(3) = 82 and q6(3) = 19. Sensor 3 can also compute the session key
K6 = p6(3) + q6(3) = 101. However, sensor 2 cannot calculate p6(2) and q6(2)
because g6(2) = 0 and thus sensor 2 cannot derive the new session key.

A missing link in the above scheme is how a base station broadcasts authenticated
messages. In the absence of authentication of broadcast messages, an adversary can
impersonate a base station and start a revocation attack. µTESLA [Przydatek
et al. 2003] and its extensions [Liu and Ning 2003; 2004] have been proposed to
provide such services for sensor networks. We assume that a proper broadcast
authentication scheme such as µTESLA is used with the KeyRev scheme. Note that
to use µTESLA protocol, the sensor network should be loosely time synchronized
to meet the requirements [Liu et al. 2005].

To add new nodes to the sensor network, pre-distributed key materials required
by the basic random key distribution scheme and the broadcast authentication
scheme must be loaded on the sensor nodes. In addition, the setup server must also
ACM Transactions on Sensor Networks, Vol. V, No. N, September 2007.
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load the personal secrets, {hj(i)}j=1..m, required by the session key distribution
scheme, to each added sensor node.

4. SECURITY AND PERFORMANCE ANALYSIS

In this section we first discuss the security of the protocol. Then, we analyze the
computation, the communication costs, and the storage requirements of the KeyRev
protocol.

4.1 Security analysis

Our proposed scheme, KeyRev, satisfies the following properties:
Property 1 The session key distribution process is secure.
The session key is distributed using the personal key distribution scheme [Liu

et al. 2003]. To restore the session key, it requires some personal secret to be
pre-distributed among the sensor nodes. Outsiders cannot recover the session key
without the pre-distributed secret. Further, as we show in Section 3.4, the re-
voked sensors cannot recover the new session keys either. Thus, the session key
distribution process is secure.

Property 2 The KeyRev scheme is secure inspite of the non-removal of the
pre-distributed key materials at a compromised sensor node.

Although, due to the non-removal of the pre-distributed key materials, the com-
promised sensor may retain the pairwise keys, the adversaries cannot figure out the
encryption key Kencr and the MAC key Kmac if the session key is updated. In the
worst case, an adversary might use a chosen plaintext attack to crack the session
key; however, the attack itself is also time consuming. As long as the duration
of sessions is less than the session key cracking time, the proposed key revocation
scheme is secure.

Property 3 The KeyRev scheme is immune to revocation attack assuming the
base station is secure.

The KeyRev scheme depends on the base station to distribute and update the
session key. Broadcast authentication schemes such as µTESLA [Perrig et al. 2002]
can be used to protect the authenticity of the broadcast messages. To start the
revocation attack, an adversary must impersonate the base station. However, since
the base station is the only one which can broadcast authenticated messages using
µTESLA protocol, the compromised sensor nodes cannot be used to start the
revocation attack. Thus, the KeyRev scheme is immune to revocation attack if the
base station is secure.

4.2 Performance analysis

4.2.1 Computation cost. To restore the session key, each sensor node must eval-
uate the polynomial Pj(x) and Qj(x) at point i. The polynomial evaluation is fast
and thus the session key recovery is efficient in computation.

4.2.2 Communication cost. The performance of the KeyRev scheme depends
mainly on the session key updating process. The session key can be updated in one
round using broadcasting. The maximum size of the broadcast message in bits is
decided by S:

S = (5t + 2) log q
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Let B indicate the transmission rate of the base station, L be the maximum range
between the base station and the sensor nodes. The session key distribution time
can be calculated as:

ts =
S

B
+

L

3 ∗ 108

Compared with the transmission time, the propagation delay is very small. Thus,
we can approximately estimate the session key distribution time as:

ts ≈ (5t + 2) log q

B

4.2.3 Storage requirement. To restore the session key, each sensor node needs to
be loaded with m personal secrets. Since the encryption key and the message au-
thentication code key can be set up on the fly, the extra storage units to implement
the KeyRev scheme is m log q.

Overall, the KeyRev scheme is efficient in consideration of the computation load,
the communication cost, and the storage space.

4.3 Comparison

The KeyRev scheme is a centralized key revocation scheme. It depends on an
efficient session key distribution scheme which can be done in one round using a
broadcast message (Section 3.4). Compared with the EsRev scheme, in case a sensor
node is compromised, the EsRev scheme requires two rounds of communications:
distributing a signature key to the no-revoked sensors, followed by broadcasting
a message containing a list of revoked key identifiers. Since the signature key is
distributed to the network using unicasting, the EsRev scheme may cause heavy
traffic in large scale sensor networks. Note that there is no need of the unicasting
and the session key can be updated in one round using broadcasting, the KeyRev
scheme is much better than the EsRev scheme.

By dividing the revocation field into sub-areas and using multiple revocation
messages, the GPSRRev scheme performs better than the EsRev scheme. How-
ever, addition information, such as location of the sensor nodes, must be used.
Further, the multicast of the revocation message in the sub-area is implemented
using message flooding and it is still time and energy consuming. The KeyRev
scheme is more efficient than the GPSRRev scheme since it uses broadcast instead
of multicast.

The distributed key revocation scheme, DistRev, has been regarded to be faster
than the centralized key revocation schemes due to the fact that it requires only
broadcast messages of a few hops that reach the local destinations [Chan et al.
2005]. However, it is not true for the KeyRev scheme. In case a sensor node
is compromised and revoked successfully from the network, the DistRev scheme
requires four rounds of communications:

(1) Neighboring nodes exchange the masks to decrypt the votes for the current
revocation sessions at the connection time.

(2) At least t sensor nodes cast their votes against the target node (compromised
node) in the current session.
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(3) The voting nodes also cast their votes against the target node on the next
session.

(4) If a sensor node receives at least t revocation votes, a hash value containing
the compromised sensor node information needs to be broadcasted through the
entire network.

Although the first three rounds of the communications are local broadcast, the
last one involves a broadcast through the entire network. The broadcast message
can either be flooded from the sensor node which receives t revocation votes or be
forwarded to the base station and broadcasted to the network by the base station.
Either way, the KeyRev scheme is much better than the DistRev scheme since it
requires only one broadcast and no local communication is required. Further, the
DistRev scheme is also built on some simplifying assumptions, for example, each
node knows its neighboring nodes before deployment, which are hard to satisfy in
many sensor network applications.

Table I compares the four revocation schemes discussed in the paper, where n
is the number of sensor nodes in the network, d is the number of sub-areas in the
GPSRRev scheme, and t is the number of votes which a sensor node has to collect
to revoke a compromised node in the DistRev scheme. We consider the situation
when a single node is compromised and revoked successfully from the network.

Table I. Comparison of the key revocation schemes in wireless sensor networks.
Scheme Rnds Unicast Broadcast Local Scalability

Broadcast

I
EsRev 2 n 1 0 Low

GPSRRev 1 d 0 d Medium
KeyRev 1 0 1 0 Good

II DistRev 4 0 1 2 ∗ t Good

Category I denotes centralized key revocation schemes and category II de-
notes distributed key revocation schemes.
Note that the GPSRRev scheme requires the location information of the
compromised sensor nodes.

The comparison in Table I shows that the KeyRev scheme is better than other
schemes in reducing the communication overhead caused by the revocation protocol.
Notice that the KeyRev scheme requires a session key to be distributed to the
network during each session. The duration of the session time could be set and
adjusted dynamically according to the application to reduce the background traffic
in the sensor network.

5. SIMULATION AND RESULTS

5.1 Experimental setting

The performance of the KeyRev scheme was evaluated in SENSIM [Wang and Ra-
mamurthy 2006], a component-based discrete-event simulator for sensor networks.
Each sensor node in SENSIM consists of six components, i.e., app, net, mac, phy,
event generator, and battery. In the physical component, the free space propaga-
tion model is used. In the mac component, all the packets sent to MAC layer are
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Fig. 1. Illustration of the GPSR-based revocation scheme. The revocation message is sent to
a sensor node in each sub-area. Then, the revocation message is multicasted to the remaining
sub-area.

guaranteed to be received at the receivers. Thus, no packet collisions are considered
and the performance evaluated in the simulation are under ideal conditions.

We consider two sensor network experimental settings: a small-scale sensor net-
work with 100 nodes uniformly dispersed in a field with dimension 100m × 100m
and a large-scale sensor network with 1000 nodes uniformly dispersed in a field with
dimension 2000m × 2000m. In both the networks, we set the base station at the
center of the field and we assume that all the sensor nodes are within reach of the
base station.

We compare the KeyRev scheme with the centralized key revocation schemes,
the EsRev scheme and the GPSRRev scheme. The sensor field in the GPSRRev
scheme is divided into four areas as shown in Figure 1. The revocation message is
sent to a sensor node in each sub-area. Then, the revocation message is multicasted
to the remaining sub-area.

The evaluation metrics include the key revocation time tv and the average energy
consumption ev per node to revoke a compromised sensor in the network. The key
revocation time is the time duration from when the key revocation protocol starts
until all the uncompromised sensor nodes receive the key revocation message.

We consider the KeyRev scheme operating on a finite field Fq, where q is a 56-
bit integer. The polynomial degree t in the KeyRev scheme is set to t = 4. We
use the simulator parameters that represent the Mica2 Mote radio characteristics.
These parameters are shown in Table II. For each experimental sensor network, we
randomly select one sensor to be revoked and run the simulation ten times. The
average value is measured.

Table II. Characteristic data for the Mica2 sensor platform.
Field Value

Effective data rate 19.2kbps

Transmit power 36mW

Receive power 14.4mW

Idle power 14.4mW

Sleep 0.015mW

Transition power 28.8mW

Transition time 800µs
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5.2 KeyRev vs. EsRev vs. GPSRRev

Table III shows the key revocation time to revoke a compromised sensor node in
the two networks. As the table shows, in the 100-node sensor network, the key
revocation time by using the EsRev scheme and the GPSRRev scheme is about 83
times and 1.6 times that of the KeyRev scheme. In the 1000-node sensor network,
the key revocation time by using the EsRev scheme and the GPSRRev scheme is
800 times and 6.5 times that of the KeyRev scheme. The KeyRev scheme is much
better than the EsRev scheme and the GPSRRev scheme in the key revocation
time.

Table IV shows the average energy consumption to revoke a compromised sensor
in the 100-node and 1000-node sensor networks. As the table shows, in the 100-node
sensor network, the average energy consumption to revoke a single node by using
the EsRev scheme and the GPSRRev is about 71 times and 19 times that of the
KeyRev scheme. In the 1000-node sensor network, the average energy consumption
to revoke a single sensor by using the EsRev scheme and the GPSRRev is about
714 times and 29 times that of the KeyRev scheme. The KeyRev scheme is much
better than the EsRev scheme and the GPSRRev scheme in the average energy
consumption.

In both the experimental settings, the KeyRev scheme performs very well com-
pared with the EsRev scheme and the GPSRRev scheme. Further, Tables III and
IV also show that the key revocation time and the average energy consumption to
revoke a single sensor node by using KeyRev scheme have only a slight difference
between the 100-node sensor network and the 1000-node sensor network, which
indicates that the KeyRev scheme is scalable to large-scale sensor networks. How-
ever, due to the long key revocation delay caused by the EsRev scheme, the EsRev
scheme is not scalable to large-scale sensor networks. The performance of the GP-
SRRev scheme is better than the EsRev scheme but not as good as the KeyRev
scheme.

Table III. Key revocation time.
100-node WSN 1000-node WSN

Scheme Time (seconds) Time (seconds)

EsRev 49.63 496.06

GPSRRev 1.02 4.04

KeyRev 0.59 0.62

Table IV. Average energy consumption per node to revoke a compromised sensor.
100-node WSN 1000-node WSN

Scheme Energy (joules) Energy (joules)

EsRev 0.71 7.14

GPSRRev 0.19 0.29

KeyRev 0.01 0.01
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5.3 KeyRev vs. DistRev

To evaluate the performance of the KeyRev scheme, we also compare the KeyRev
scheme with the DistRev scheme. The metrics we evaluate include the key revo-
cation time and the average energy consumption. As we discussed in Section 2.2,
each revocation session in the DistRev scheme consists of three states: pending,
active, and completed. The critical part of the three states which decides the key
revocation time is the active state. In the active state, a sensor node casts a vote
and the vote is broadcasted locally among the neighboring nodes. Assume that the
active state lasts for ∆s time for each node and ∆c is the maximum time that a
message needs to completely propagate in a local neighborhood broadcast. We have
tv > ∆s and ∆s > 2∆c since each sensor has to vote both in the current session and
on the next session. Therefore, the key revocation time tv of the DistRev scheme is
at least twice that of ∆c, tv > 2∆c. Similarly, let e∆s be the energy consumption
during the active state and e∆c

be the energy consumption consumed during the
∆c period of time, We have ev > e∆s

, e∆s
> te∆c

(to revoke a compromised sensor
node, the sensor node must receive at least t revocation votes) and thus, ev > te∆c .

The duration of ∆c is decided by a maximum count L (max-hops) which the
vote can be broadcasted to ensure complete dissemination in the neighborhood of
a compromised sensor node (four-six hops can cover this area with high probability
[Eschenauer and Gligor 2002]). We test the ∆c in the 100-node and the 1000-node
sensor networks. The sensor node casting the vote is set to the center of each
testbed. Table V shows the number of sensor nodes in the coverage area when the
max-hops changes.

Table V. The number of nodes in the covered area.
L (max-hops) 1 2 3 4 5 6

100-node WSN 100 n/a n/a n/a n/a n/a

1000-node WSN 15 44 85 142 219 299

Note: All the sensor nodes in the 100-node sensor network
are in the cover area when the max-hops is set to 1.

In the 100-node sensor network, the simulation results show that ∆c = 0.035
seconds and e∆c = 995 nano-joules. Thus, we have tv > 0.070 and ev > 995t
nano-joules. Compared with the KeyRev scheme in the 100-node sensor network as
shown in Tables III and IV, the DistRev scheme might be better than the KeyRev
scheme but the performance of the KeyRev scheme is also very good in the 100-node
sensor network.

Figure 2 shows the key revocation time of the DistRev scheme in the 1000-node
sensor network when the max-hops changes. Note that the column value is not
the real key revocation time tv of the DistRev scheme but the value of the 2∆c.
The actual key revocation time is tv > 2∆c. The dotted horizontal line shows the
key revocation time of the KeyRev scheme in the 1000-node sensor network. From
the figure, we can draw the conclusion that the KeyRev scheme is better than the
DistRev scheme in terms of the key revocation time since the max-hops is definitely
greater than one in the DistRev scheme to ensure full coverage of the neighboring
nodes of the target node (compromised node).
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Figure 3 shows the average energy consumption per node in the DistRev scheme
in the 1000-node sensor network when the max-hops changes. The column value
is also not the real average energy consumption ev of the DistRev scheme but the
value of 2e∆c

(we set t to the minimum value 2, t = 2). The actual average energy
consumption is ev > te∆c

. The dotted horizontal line shows the average energy
consumption of the KeyRev scheme in the 1000-node sensor network. The figure
indicates that the KeyRev scheme is better than the DistRev scheme even if we set
the number of votes to revoke a sensor node to the minimum value of two.

Fig. 2. Key revocation time in the 1000-node sensor network. The column value is not the real
key revocation time tv of the DistRev scheme but the value of the 2∆c.

Fig. 3. Average energy consumption per node to revoke a compromised sensor in the 1000-node
sensor network. The column value is also not the real average energy consumption ev of the
DistRev scheme but the value of 2e∆c .

To ensure the neighborhood of the target node (compromised node) is fully cov-
ered, the max-hops cannot be set too small. Thus, our proposed scheme, KeyRev,
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is better than the DistRev scheme. From Figures 2 and 3, we can estimate the
performance of the KeyRev scheme and the DistRev scheme. For example, if the
max-hops is set to five, the key revocation time of the DistRev scheme is at least
10.1 times that of the KeyRev scheme and the average energy consumption of the
DistRev scheme is at least 6.8 times that of the KeyRev scheme.

Overall, the KeyRev scheme is much better than the previously proposed central-
ized key revocation schemes, such as the EsRev scheme and the GPSRRev scheme.
It is also superior to the distributed key revocation scheme, the DistRev scheme.
The superior performance of the KeyRev protocol is due to the efficient session key
distribution scheme presented in Section 3.4.

6. CONCLUSION AND FUTURE WORK

In this paper, we proposed a key revocation scheme, KeyRev, for wireless sensor
networks. Unlike most of the key revocation schemes proposed in the literature
(such as [Eschenauer and Gligor 2002; Chan et al. 2003; Chan et al. 2005]) focusing
on removing the compromised keys, our proposed scheme focuses on updating the
session key and thus removing the compromised sensor nodes from the network.

Previous research on key revocation have concluded that the distributed key
revocation schemes are faster than the centralized key revocation schemes. For
example, Chan et al. in [Chan et al. 2005] proposed and analyzed the security of
the DistRev scheme. However, they did not evaluate its performance. In this paper,
we evaluated and estimated the minimum value of the key revocation time and the
average energy consumption of the DistRev scheme. To the best of our knowledge,
this is also the first paper which evaluates the performance of a distributed key
revocation protocol in a wireless sensor network. We found that our proposed
centralized scheme, KeyRev, is much better than the distributed key revocation
scheme proposed in [Chan et al. 2005]. It goes counter to the conclusion in the
paper [Chan et al. 2005] which claims that the distributed key revocation scheme
has better performance than any centralized key revocation scheme.

As the simulation results show, the performance of the KeyRev scheme is much
better than that of other revocation schemes and the KeyRev scheme is also scalable
to large-scale sensor networks. The KeyRev scheme depends on an effective session
key distribution scheme in the network, which is currently based on the personal
key share distribution scheme proposed in [Liu et al. 2003]. Further investigation on
different session key distribution schemes will be conducted in the future. Further,
the KeyRev scheme is a centralized revocation scheme and the base station is the
single point of failure. A distributed key revocation scheme might be still attractive
due to the avoidance of single points of failure. The integration of both centralized
and distributed key revocation scheme merits under further investigation. Finally,
the KeyRev scheme depends on a globally distributed session key in the network,
which requires the sensor network be synchronized. Since most broadcast authen-
tication schemes, such as µTesla, require the synchronization of all sensor nodes in
the network, it is not a problem if such broadcast authentication schemes are used.
Our future work will extend the framework to scenarios where the sensor network
is not synchronized.
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