144 research outputs found

    CODE-MIXING AS A BILINGUAL INSTRUCTIONAL STRATEGY IN EFL CONTEXT

    Get PDF
    This research investigated the code-mixing technique from perspectives of teacher and student in university teaching contexts, more specifically the use of L1 (Chinese) in L2 (English) in Chinese university English education programs. Through the analysis of results of semi-structured interview, several themes emerged: (1) from the student’s perspective, the use of code-mixing at classes helps her to understand the lesson better, while she also performed resistance to the overuse of code-mixing; (2) from the perspective of the teacher, the use of code-mixing helps her to address the complex or difficult points more easily to the class; (3) the use of code-mixing influences not only linguistic competence , but also cognitive and sociocultural aspects of the learner. The results demonstrate that using bilingual instruction significantly enhance the way both teacher and student use English.&nbsp

    Unpacking the Ethical Value Alignment in Big Models

    Full text link
    Big models have greatly advanced AI's ability to understand, generate, and manipulate information and content, enabling numerous applications. However, as these models become increasingly integrated into everyday life, their inherent ethical values and potential biases pose unforeseen risks to society. This paper provides an overview of the risks and challenges associated with big models, surveys existing AI ethics guidelines, and examines the ethical implications arising from the limitations of these models. Taking a normative ethics perspective, we propose a reassessment of recent normative guidelines, highlighting the importance of collaborative efforts in academia to establish a unified and universal AI ethics framework. Furthermore, we investigate the moral inclinations of current mainstream LLMs using the Moral Foundation theory, analyze existing alignment algorithms, and outline the unique challenges encountered in aligning ethical values within them. To address these challenges, we introduce a novel conceptual paradigm for aligning the ethical values of big models and discuss promising research directions for alignment criteria, evaluation, and method, representing an initial step towards the interdisciplinary construction of the ethically aligned AI This paper is a modified English version of our Chinese paper https://crad.ict.ac.cn/cn/article/doi/10.7544/issn1000-1239.202330553, intended to help non-Chinese native speakers better understand our work

    From Instructions to Intrinsic Human Values -- A Survey of Alignment Goals for Big Models

    Full text link
    Big models, exemplified by Large Language Models (LLMs), are models typically pre-trained on massive data and comprised of enormous parameters, which not only obtain significantly improved performance across diverse tasks but also present emergent capabilities absent in smaller models. However, the growing intertwining of big models with everyday human lives poses potential risks and might cause serious social harm. Therefore, many efforts have been made to align LLMs with humans to make them better follow user instructions and satisfy human preferences. Nevertheless, `what to align with' has not been fully discussed, and inappropriate alignment goals might even backfire. In this paper, we conduct a comprehensive survey of different alignment goals in existing work and trace their evolution paths to help identify the most essential goal. Particularly, we investigate related works from two perspectives: the definition of alignment goals and alignment evaluation. Our analysis encompasses three distinct levels of alignment goals and reveals a goal transformation from fundamental abilities to value orientation, indicating the potential of intrinsic human values as the alignment goal for enhanced LLMs. Based on such results, we further discuss the challenges of achieving such intrinsic value alignment and provide a collection of available resources for future research on the alignment of big models.Comment: 20 pages, 5 figure

    The Use of Switching Point and Protection Levels to Improve Revenue Performance in Order‐Driven Production Systems

    Full text link
    In a multiproduct order‐driven production system, an organization has to decide how to selectively accept orders and allocate capacity to these orders so as to maximize total profit (TP). In this article, we incorporate the novel concept of switching point in developing three capacity‐allocation with switching point heuristics (CASPa‐c). Our analysis indicates that all three CASP heuristics outperform the first‐come‐first‐served model and Barut and Sridharan's dynamic capacity‐allocation process (DCAP) model. The best model, CASPb, has an 8% and 6% average TP improvement over DCAP using the split lot and whole lot policies, respectively. In addition, CASPb performs particularly well under operating conditions of tight capacity and large price differences between product classes. The introduction of a switching point, which has not been found in previous capacity‐allocation heuristics, provides for a better balance between forward and backward allocation of available capacity and plays a significant role in improving TP.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/112181/1/j.1540-5915.2011.00320.x.pd

    Prototypical Fine-tuning: Towards Robust Performance Under Varying Data Sizes

    Full text link
    In this paper, we move towards combining large parametric models with non-parametric prototypical networks. We propose prototypical fine-tuning, a novel prototypical framework for fine-tuning pretrained language models (LM), which automatically learns a bias to improve predictive performance for varying data sizes, especially low-resource settings. Our prototypical fine-tuning approach can automatically adjust the model capacity according to the number of data points and the model's inherent attributes. Moreover, we propose four principles for effective prototype fine-tuning towards the optimal solution. Experimental results across various datasets show that our work achieves significant performance improvements under various low-resource settings, as well as comparable and usually better performances in high-resource scenarios.Comment: Published as a conference paper at AAAI 202

    Value FULCRA: Mapping Large Language Models to the Multidimensional Spectrum of Basic Human Values

    Full text link
    The rapid advancement of Large Language Models (LLMs) has attracted much attention to value alignment for their responsible development. However, how to define values in this context remains a largely unexplored question. Existing work mainly follows the Helpful, Honest, Harmless principle and specifies values as risk criteria formulated in the AI community, e.g., fairness and privacy protection, suffering from poor clarity, adaptability and transparency. Inspired by basic values in humanity and social science across cultures, this work proposes a novel basic value alignment paradigm and introduces a value space spanned by basic value dimensions. All LLMs' behaviors can be mapped into the space by identifying the underlying values, possessing the potential to address the three challenges. To foster future research, we apply the representative Schwartz's Theory of Basic Values as an initialized example and construct FULCRA, a dataset consisting of 5k (LLM output, value vector) pairs. Our extensive analysis of FULCRA reveals the underlying relation between basic values and LLMs' behaviors, demonstrating that our approach not only covers existing mainstream risks but also anticipates possibly unidentified ones. Additionally, we present an initial implementation of the basic value evaluation and alignment, paving the way for future research in this line

    CAMP:Co-Attention Memory Networks for Diagnosis Prediction in Healthcare

    Get PDF
    Diagnosis prediction, which aims to predict future health information of patients from historical electronic health records (EHRs), is a core research task in personalized healthcare. Although some RNN-based methods have been proposed to model sequential EHR data, these methods have two major issues. First, they cannot capture fine-grained progression patterns of patient health conditions. Second, they do not consider the mutual effect between important context (e.g., patient demographics) and historical diagnosis. To tackle these challenges, we propose a model called Co-Attention Memory networks for diagnosis Prediction (CAMP), which tightly integrates historical records, fine-grained patient conditions, and demographics with a three-way interaction architecture built on co-attention. Our model augments RNNs with a memory network to enrich the representation capacity. The memory network enables analysis of fine-grained patient conditions by explicitly incorporating a taxonomy of diseases into an array of memory slots. We instantiate the READ/WRITE operations of the memory network so that the memory cooperates effectively with the patient demographics through co-attention mechanism. Experiments on real-world datasets demonstrate that CAMP consistently performs better than state-of-the-art methods

    Knowledge Plugins: Enhancing Large Language Models for Domain-Specific Recommendations

    Full text link
    The significant progress of large language models (LLMs) provides a promising opportunity to build human-like systems for various practical applications. However, when applied to specific task domains, an LLM pre-trained on a general-purpose corpus may exhibit a deficit or inadequacy in two types of domain-specific knowledge. One is a comprehensive set of domain data that is typically large-scale and continuously evolving. The other is specific working patterns of this domain reflected in the data. The absence or inadequacy of such knowledge impacts the performance of the LLM. In this paper, we propose a general paradigm that augments LLMs with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE. This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way. Then, the extracted knowledge is incorporated through prompts, without any computational cost of model fine-tuning. We instantiate the general paradigm on a widespread application, i.e. recommender systems, where critical item attributes and collaborative filtering signals are incorporated. Experimental results demonstrate that DOKE can substantially improve the performance of LLMs in specific domains
    corecore